Department of Neuroscience, Ohio State University College of Medicine, Columbus, OH 43210, USA.
J Physiol. 2012 Apr 1;590(7):1699-720. doi: 10.1113/jphysiol.2011.225482. Epub 2012 Jan 30.
Starburst amacrine cells (SACs) are an essential component of the mechanism that generates direction selectivity in the retina. SACs exhibit opposite polarity, directionally selective (DS) light responses, depolarizing to stimuli that move centrifugally away from the cell through the receptive field surround, but hyperpolarizing to stimuli that move centripetally towards the cell through the surround.Recent findings suggest that (1) the intracellular chloride concentration (Cl(−)) is high in SAC proximal, but low in SAC distal dendritic compartments, so that GABA depolarizes and hyperpolarizes the proximal and distal compartments, respectively, and (2) this Cl(−) gradient plays an essential role in generating SAC DS light responses. Employing a biophysically realistic, computational model of SACs, which incorporated experimental measurements of SAC electrical properties and GABA and glutamate responses, we further investigated whether and how a Cl(−) gradient along SAC dendrites produces their DS responses. Our computational analysis suggests that robust DS light responses would be generated in both the SAC soma and distal dendrites if (1) the Cl(−) equilibrium potential is more positive in the proximal dendrite and more negative in the distal dendrite than the resting membrane potential, so that GABA depolarizes and hyperpolarizes the proximal and distal compartments, respectively, and (2) the GABA-evoked increase in the Cl(−) conductance lasts longer than the glutamate-evoked increase in cation conductance. The combination of these two specific GABA-associated spatial and temporal asymmetries, in conjunction with symmetric glutamate excitation, may underlie the opposite polarity, DS light responses of SACs.
星爆型无长突细胞(SAC)是视网膜产生方向选择性的机制中的一个重要组成部分。SAC 表现出相反的极性,具有方向选择性(DS)的光反应,对从细胞感受野周围向外离心移动的刺激产生去极化反应,但对向细胞内心移动的刺激产生超极化反应。最近的研究结果表明:(1)SAC 近端的细胞内氯离子浓度(Cl(-))较高,而 SAC 远端树突隔室的氯离子浓度较低,因此 GABA 分别使近端和远端隔室去极化和超极化;(2)这种Cl(-)梯度在产生 SAC DS 光反应中起着至关重要的作用。本研究采用 SAC 的生物物理现实计算模型,该模型结合了 SAC 电特性以及 GABA 和谷氨酸反应的实验测量结果,进一步研究了 SAC 树突上的Cl(-)梯度是否以及如何产生其 DS 反应。我们的计算分析表明,如果(1)Cl(-)平衡电位在 SAC 近端树突中比在静息膜电位中更正,而在 SAC 远端树突中更负,从而使 GABA 分别使近端和远端隔室去极化和超极化;(2)GABA 诱发的氯离子电导增加持续时间长于谷氨酸诱发的阳离子电导增加,那么在 SAC 体和远端树突中都会产生强烈的 DS 光反应。这两种特定的 GABA 相关的空间和时间不对称性的结合,加上对称的谷氨酸兴奋,可能是 SAC 相反极性 DS 光反应的基础。