Suppr超能文献

细菌中的阴离子交换反应。

Anion exchange reactions in bacteria.

作者信息

Maloney P C

机构信息

Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.

出版信息

J Bioenerg Biomembr. 1990 Aug;22(4):509-23. doi: 10.1007/BF00762960.

Abstract

Bacterial anion exchange now includes both "carboxylate-linked" reactions in which there is an antiport of mono- and dicarboxylic acids, and "Pi-linked" reactions that build on phosphate (Pi) and organic phosphates. To illustrate the general features of this expanding class, this article discussed the biochemistry, physiology, and molecular biology of Pi-linked antiporters that accept glucose 6-phosphate (G6P) as their primary substrate. Kinetic and biochemical analysis suggests that Pi-linked exchangers have a bifunctional active site that accepts a pair of negative charges. For this reason, exchange stoichiometry moves between the limits of 2:1 and 2:2 to reflect the ratio of mono- and divalent substrates at either membrane surface. This results in a particularly interesting reaction sequence in vivo, where, because cytosolic pH is relatively alkaline, one can expect the asymmetric exchange of two monovalent G6P anions against a single divalent G6P. In this way, an otherwise futile self-exchange of G6P gives a net flux driven (indirectly) by the pH gradient. Despite this biochemical and physiological complexity, Pi-linked carriers resemble all other secondary carriers at a molecular level. Indeed, sequence analysis leads one to infer a common (albeit low resolution) structural theme in which each functional unit has two sets of six trans-membrane alpha helices separated by a central hydrophilic loop. Present examples show that this topology can derive from either a single protein, as is typical in bacteria, or from pairs of identical subunits, as found in mitochondria and chloroplasts. The finding of this common structure should make it possible to build detailed structural models that have implications for all membrane carrier proteins.

摘要

细菌阴离子交换现在既包括“羧酸盐连接”反应(其中一元和二元羧酸进行反向转运),也包括基于磷酸盐(Pi)和有机磷酸盐的“Pi连接”反应。为了阐述这一不断扩展的类别中的一般特征,本文讨论了以6-磷酸葡萄糖(G6P)作为主要底物的Pi连接反向转运体的生物化学、生理学和分子生物学。动力学和生物化学分析表明,Pi连接交换体具有一个接受一对负电荷的双功能活性位点。因此,交换化学计量在2:1和2:2的极限之间变化,以反映任一膜表面上单价和二价底物的比例。这在体内导致了一个特别有趣的反应序列,由于胞质pH相对呈碱性,人们可以预期两个单价G6P阴离子与一个二价G6P进行不对称交换。通过这种方式,原本无效的G6P自我交换产生了由pH梯度(间接)驱动的净通量。尽管存在这种生物化学和生理学上的复杂性,但Pi连接载体在分子水平上与所有其他次级载体相似。事实上,序列分析使人们推断出一个共同的(尽管分辨率较低)结构主题,其中每个功能单元有两组六个跨膜α螺旋,由一个中央亲水环隔开。目前的例子表明,这种拓扑结构可以源自单一蛋白质(如细菌中的典型情况),也可以源自成对的相同亚基(如线粒体和叶绿体中的情况)。发现这种共同结构应该能够构建出对所有膜载体蛋白都有启示的详细结构模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验