Suppr超能文献

解析与细菌毒力调节子酪蛋白水解酶 P(ClpP)蛋白寡聚化和活性相关的结构网络。

Insights into structural network responsible for oligomerization and activity of bacterial virulence regulator caseinolytic protease P (ClpP) protein.

机构信息

Center for Integrated Protein Science Munich, Technische Universität München, Department of Chemistry, Garching, Germany.

出版信息

J Biol Chem. 2012 Mar 16;287(12):9484-94. doi: 10.1074/jbc.M111.336222. Epub 2012 Jan 30.

Abstract

The barrel-shaped caseinolytic protease P (ClpP) is a main virulence regulator in the bacterial pathogen Staphylococcus aureus (SaClpP). It consists of two heptameric rings forming a homotetradecamer with an inner chamber that houses the 14 active sites. We recently showed that SaClpP is able to adopt a compressed, inactive conformation. We present here the 2.3 Å resolution structure of SaClpP in its closed, active conformation as well as the structure of the S98A mutant. Comprehensive mutational analysis aiming at destabilizing one or the other or both conformations was able to pinpoint key residues involved in this catalytic switch and in the heptamer-heptamer interaction. By probing the active site serine with a covalently modifying β-lactone probe, we could show that the tetradecameric organization is essential for a proper formation of the active site. Structural data suggest that a highly conserved hydrogen-bonding network links oligomerization to activity. A comparison of ClpP structures from different organisms provides suggestive evidence for the presence of a universal mechanism regulating ClpP activity in which binding of one subunit to the corresponding subunit on the other ring interface is necessary for the functional assembly of the catalytic triad and thus for protease function. This mechanism ensures controlled access to the active sites of a highly unspecific protease.

摘要

桶状的组织蛋白酶 P(ClpP)是细菌病原体金黄色葡萄球菌(SaClpP)中的主要毒力调节因子。它由两个七聚体环组成,形成一个具有内部腔室的同十四聚体,内部腔室容纳 14 个活性位点。我们最近表明,SaClpP 能够采用压缩的、非活性的构象。我们在此呈现了 SaClpP 处于封闭、活性构象的 2.3 Å 分辨率结构,以及 S98A 突变体的结构。旨在破坏一种或另一种或两种构象的全面突变分析能够确定参与这种催化开关和七聚体-七聚体相互作用的关键残基。通过用共价修饰的β-内酰胺探针探测活性位点丝氨酸,我们可以表明十四聚体组织对于正确形成活性位点是必不可少的。结构数据表明,高度保守的氢键网络将寡聚化与活性联系起来。来自不同生物体的 ClpP 结构的比较提供了有说服力的证据,表明存在一种普遍的机制来调节 ClpP 活性,其中一个亚基与另一个环界面上的相应亚基的结合对于催化三联体的功能组装以及因此对于蛋白酶功能是必要的。这种机制确保了对高度非特异性蛋白酶的活性位点的受控访问。

相似文献

2
Helix unfolding/refolding characterizes the functional dynamics of Staphylococcus aureus Clp protease.
J Biol Chem. 2013 Jun 14;288(24):17643-53. doi: 10.1074/jbc.M113.452714. Epub 2013 Apr 26.
3
Phenyl Esters Are Potent Inhibitors of Caseinolytic Protease P and Reveal a Stereogenic Switch for Deoligomerization.
J Am Chem Soc. 2015 Jul 8;137(26):8475-83. doi: 10.1021/jacs.5b03084. Epub 2015 Jun 29.
4
Structural switching of Staphylococcus aureus Clp protease: a key to understanding protease dynamics.
J Biol Chem. 2011 Oct 28;286(43):37590-601. doi: 10.1074/jbc.M111.277848. Epub 2011 Sep 7.
5
Reversible inhibition of the ClpP protease via an N-terminal conformational switch.
Proc Natl Acad Sci U S A. 2018 Jul 10;115(28):E6447-E6456. doi: 10.1073/pnas.1805125115. Epub 2018 Jun 25.
6
Crystal structure at 1.9A of E. coli ClpP with a peptide covalently bound at the active site.
J Struct Biol. 2006 Oct;156(1):165-74. doi: 10.1016/j.jsb.2006.03.013. Epub 2006 Apr 21.
7
Open and compressed conformations of Francisella tularensis ClpP.
Proteins. 2017 Jan;85(1):188-194. doi: 10.1002/prot.25197. Epub 2016 Nov 20.
9
A conformational switch underlies ClpP protease function.
Angew Chem Int Ed Engl. 2011 Jun 14;50(25):5749-52. doi: 10.1002/anie.201100666. Epub 2011 May 4.
10
Insights into the inter-ring plasticity of caseinolytic proteases from the X-ray structure of Mycobacterium tuberculosis ClpP1.
Acta Crystallogr D Biol Crystallogr. 2007 Feb;63(Pt 2):249-59. doi: 10.1107/S0907444906050530. Epub 2007 Jan 16.

引用本文的文献

1
Mechanism of allosteric activation in human mitochondrial ClpP protease.
Proc Natl Acad Sci U S A. 2025 Apr 22;122(16):e2419881122. doi: 10.1073/pnas.2419881122. Epub 2025 Apr 15.
3
Protein degradation by a component of the chaperonin-linked protease ClpP.
Genes Cells. 2024 Sep;29(9):695-709. doi: 10.1111/gtc.13141. Epub 2024 Jul 4.
4
It's ok to be outnumbered - sub-stoichiometric modulation of homomeric protein complexes.
RSC Med Chem. 2022 Oct 27;14(1):22-46. doi: 10.1039/d2md00212d. eCollection 2023 Jan 25.
5
Antibiotic Acyldepsipeptides Stimulate the Clp-ATPase/ClpP Complex for Accelerated Proteolysis.
mBio. 2022 Dec 20;13(6):e0141322. doi: 10.1128/mbio.01413-22. Epub 2022 Oct 26.
6
Acyldepsipeptide Analogues: A Future Generation Antibiotics for Tuberculosis Treatment.
Pharmaceutics. 2022 Sep 15;14(9):1956. doi: 10.3390/pharmaceutics14091956.
7
Tailored Phenyl Esters Inhibit ClpXP and Attenuate Staphylococcus aureus α-Hemolysin Secretion.
Chembiochem. 2022 Aug 17;23(16):e202200253. doi: 10.1002/cbic.202200253. Epub 2022 Jul 5.
9
Structural insights into ClpP protease side exit pore-opening by a pH drop coupled with substrate hydrolysis.
EMBO J. 2022 Jul 4;41(13):e109755. doi: 10.15252/embj.2021109755. Epub 2022 May 20.
10
Generation of Lasso Peptide-Based ClpP Binders.
Int J Mol Sci. 2021 Dec 31;23(1):465. doi: 10.3390/ijms23010465.

本文引用的文献

1
Structural insights into the conformational diversity of ClpP from Bacillus subtilis.
Mol Cells. 2011 Dec;32(6):589-95. doi: 10.1007/s10059-011-0197-1. Epub 2011 Nov 9.
2
Vibralactone as a tool to study the activity and structure of the ClpP1P2 complex from Listeria monocytogenes.
Angew Chem Int Ed Engl. 2011 Nov 11;50(46):11001-4. doi: 10.1002/anie.201104391. Epub 2011 Sep 22.
3
Structural switching of Staphylococcus aureus Clp protease: a key to understanding protease dynamics.
J Biol Chem. 2011 Oct 28;286(43):37590-601. doi: 10.1074/jbc.M111.277848. Epub 2011 Sep 7.
4
ClpXP, an ATP-powered unfolding and protein-degradation machine.
Biochim Biophys Acta. 2012 Jan;1823(1):15-28. doi: 10.1016/j.bbamcr.2011.06.007. Epub 2011 Jun 27.
5
A conformational switch underlies ClpP protease function.
Angew Chem Int Ed Engl. 2011 Jun 14;50(25):5749-52. doi: 10.1002/anie.201100666. Epub 2011 May 4.
8
Structures of ClpP in complex with acyldepsipeptide antibiotics reveal its activation mechanism.
Nat Struct Mol Biol. 2010 Apr;17(4):471-8. doi: 10.1038/nsmb.1787. Epub 2010 Mar 21.
9
Studying chaperone-proteases using a real-time approach based on FRET.
J Struct Biol. 2009 Nov;168(2):267-77. doi: 10.1016/j.jsb.2009.07.003. Epub 2009 Jul 8.
10
Phaser crystallographic software.
J Appl Crystallogr. 2007 Aug 1;40(Pt 4):658-674. doi: 10.1107/S0021889807021206. Epub 2007 Jul 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验