Suppr超能文献

辅助信息提高了典型喀斯特峰丛洼地土壤有机碳数据的克里金插值。

Ancillary information improves kriging on soil organic carbon data for a typical karst peak cluster depression landscape.

机构信息

Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.

出版信息

J Sci Food Agric. 2012 Mar 30;92(5):1094-102. doi: 10.1002/jsfa.5593. Epub 2012 Feb 1.

Abstract

BACKGROUND

Soil carbon management at landscape scale requires reliable information on the spatial distribution of soil organic carbon (SOC). However, how to improve the accuracy of spatial prediction is not well addressed in the karst region of southwestern China. This study evaluates the performance of univariate kriging (ordinary kriging (OK)) and hybrid kriging (co-kriging (CK), regression kriging (RK) and residual maximum likelihood (REML)) in mapping the spatial distribution of SOC at a depth of 0-15 cm. Terrain attributes and the normalised difference vegetation index (NDVI) were used as ancillary variables.

RESULTS

The distribution of SOC was significantly related to NDVI and terrain attributes. Furthermore, geostatistical analyses reflected a moderately structured spatial correlation of SOC. Regression analyses identified the NDVI and slope as the best predictors for describing the spatial pattern of SOC. Combined with NDVI and slope gradient, REML and RK performed better in increasing map prediction accuracy and decreasing the soothing effect of kriging.

CONCLUSION

The spatial pattern of SOC was controlled by topography and cultivation activity. The predictive abilities of OK and CK were limited. Combined with the auxiliary variables, REML and RK can improve the prediction accuracy. This study is beneficial for the further research of precise SOC management in the typical karst landscape.

摘要

背景

在景观尺度上进行土壤碳管理需要可靠的土壤有机碳(SOC)空间分布信息。然而,在中国西南喀斯特地区,如何提高空间预测的准确性还没有得到很好的解决。本研究评估了一元克立格(普通克立格(OK))和混合克立格(协克里格(CK)、回归克立格(RK)和残差最大似然(REML))在 0-15cm 深度范围内对 SOC 空间分布进行制图的性能。地形属性和归一化差异植被指数(NDVI)被用作辅助变量。

结果

SOC 的分布与 NDVI 和地形属性有显著的关系。此外,地统计学分析反映了 SOC 具有中等程度的空间相关性。回归分析确定 NDVI 和坡度是描述 SOC 空间格局的最佳预测因子。与 NDVI 和坡度梯度相结合,REML 和 RK 在提高地图预测精度和降低克立格平滑效应方面表现更好。

结论

SOC 的空间格局受地形和耕作活动的控制。OK 和 CK 的预测能力有限。与辅助变量相结合,REML 和 RK 可以提高预测精度。本研究有助于进一步研究典型喀斯特景观中 SOC 的精确管理。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验