Instituto de Tecnologia Química e Biológica da Universidade Nova de Lisboa, Av. da República, Estação Agronómica Nacional, 2780-157 Oeiras, Portugal.
Dalton Trans. 2012 Mar 28;41(12):3474-84. doi: 10.1039/c2dt11751g. Epub 2012 Feb 2.
The oxidative decarbonylation of the η(3)-allyl dicarbonyl complexes [Mo(η(3)-C(3)H(5))Cl(CO)(2)(L)] (L = 2,2'-bipyridine (bipy) (1), 4,4'-di-tert-butyl-2,2'-bipyridine (di-tBu-bipy) (2)) by reaction with aqueous tert-butylhydroperoxide (TBHP) or H(2)O(2) gave the following compounds in good to excellent yields: the oxo-bridged dimers MoO(2)Cl(L)O (L = bipy (3), di-tBu-bipy (6)) using TBHP(10 equiv.)/CH(3)CN/r.t.; the molybdenum oxide/bipyridine hybrid material {[MoO(3)(bipy)][MoO(3)(H(2)O)]}(n) (4) and the octanuclear complex [Mo(8)O(24)(di-tBu-bipy)(4)] (7) using TBHP(50 equiv.)/H(2)O/70 °C; the oxodiperoxo complexes MoO(O(2))(2)(L) (L = bipy (5), di-tBu-bipy (8)) using H(2)O(2)(10 equiv.)/CH(3)CN/r.t. The structure of 7·x(solvent) (where solvent = CH(2)Cl(2) and/or diethyl ether) was determined by single crystal X-ray diffraction. Despite possessing the same windmill-type complex as that described previously for 7·10CH(2)Cl(2), the crystal structure of 7·x(solvent) is unique due to differences in the crystal packing. Compounds 1-8 were examined as catalysts or catalyst precursors for the epoxidation of cyclooctene using aqueous TBHP or H(2)O(2) as oxidant at 55 or 70 °C. Reactions were performed without co-solvent or with the addition of water, ethanol or acetonitrile. Cyclooctene oxide was always the only reaction product. Solids recovered after 24 h reaction at 70 °C were identified by FT-IR spectroscopy as the hybrid 4 from (1,3-5)/TBHP, complex 5 from (1,3-5)/H(2)O(2), and complex 8 from (2,6-8)/H(2)O(2). With TBHP as oxidant, the highest epoxide yields (for 24 h reaction at 70 °C) were obtained using excess H(2)O as solvent (28-38% for 1,3-5; 87-98% for 2,6-8), while with H(2)O(2) as oxidant, the highest epoxide yields were obtained using CH(3)CN as solvent (54-81% for 3-8).
η(3)-烯丙基二羰基配合物[Mo(η(3)-C(3)H(5))Cl(CO)(2)(L)](L=2,2'-联吡啶(bipy)(1),4,4'-二叔丁基-2,2'-联吡啶(di-tBu-bipy)(2))与水叔丁基过氧化氢(TBHP)或 H(2)O(2)反应,通过氧化脱羰生成以下化合物,产率良好至优秀:用 TBHP(10 当量.)/CH(3)CN/室温氧化桥联的二聚体MoO(2)Cl(L)O(L=bipy(3),di-tBu-bipy(6));使用 TBHP(50 当量.)/H(2)O/70°C生成钼氧化物/联吡啶杂化材料{[MoO(3)(bipy)][MoO(3)(H(2)O)]}(n)(4)和八核配合物[Mo(8)O(24)(di-tBu-bipy)(4)](7);用 H(2)O(2)(10 当量.)/CH(3)CN/室温生成氧二过氧化物配合物 MoO(O(2))(2)(L)(L=bipy(5),di-tBu-bipy(8))。7·x(溶剂)(其中溶剂=CH(2)Cl(2)和/或二乙醚)的结构通过单晶 X 射线衍射确定。尽管 7·x(溶剂)具有与之前描述的 7·10CH(2)Cl(2 相同的风车型配合物,但由于晶体堆积方式的不同,其晶体结构是独特的。化合物 1-8 被用作环辛烯环氧化的催化剂或催化剂前体,使用水叔丁基过氧化氢或 H(2)O(2)作为氧化剂,在 55°C 或 70°C 下进行反应。反应在没有共溶剂或添加水、乙醇或乙腈的情况下进行。环辛烯氧化物始终是唯一的反应产物。在 70°C 下反应 24 小时后回收的固体通过傅里叶变换红外光谱鉴定为(1,3-5)/TBHP 生成的杂化 4,(1,3-5)/H(2)O(2)生成的 5,(2,6-8)/H(2)O(2)生成的 8。使用 TBHP 作为氧化剂,当使用过量 H(2)O 作为溶剂时(1,3-5 为 28-38%;2,6-8 为 87-98%),得到的环氧化物产率最高(在 70°C 下反应 24 小时),而使用 H(2)O(2)作为氧化剂时,在使用 CH(3)CN 作为溶剂时(3-8 为 54-81%)得到的环氧化物产率最高。