Trovato M, Reggiani L
Dipartimento di Matematica, Università di Catania, Viale A. Doria, I-95125 Catania, Italy.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Dec;84(6 Pt 1):061147. doi: 10.1103/PhysRevE.84.061147. Epub 2011 Dec 27.
By introducing a quantum entropy functional of the reduced density matrix, the principle of quantum maximum entropy is asserted as fundamental principle of quantum statistical mechanics. Accordingly, we develop a comprehensive theoretical formalism to construct rigorously a closed quantum hydrodynamic transport within a Wigner function approach. The theoretical formalism is formulated in both thermodynamic equilibrium and nonequilibrium conditions, and the quantum contributions are obtained by only assuming that the Lagrange multipliers can be expanded in powers of h(2). In particular, by using an arbitrary number of moments, we prove that (1) on a macroscopic scale all nonlocal effects, compatible with the uncertainty principle, are imputable to high-order spatial derivatives, both of the numerical density n and of the effective temperature T; (2) the results available from the literature in the framework of both a quantum Boltzmann gas and a degenerate quantum Fermi gas are recovered as a particular case; (3) the statistics for the quantum Fermi and Bose gases at different levels of degeneracy are explicitly incorporated; (4) a set of relevant applications admitting exact analytical equations are explicitly given and discussed; (5) the quantum maximum entropy principle keeps full validity in the classical limit, when h → 0.
通过引入约化密度矩阵的量子熵泛函,量子最大熵原理被确立为量子统计力学的基本原理。据此,我们发展了一种全面的理论形式体系,以在维格纳函数方法内严格构建一个封闭的量子流体动力学输运。该理论形式体系在热力学平衡和非平衡条件下均有表述,且仅通过假设拉格朗日乘子可以按(h^2)的幂次展开来获得量子贡献。特别地,通过使用任意数量的矩,我们证明:(1) 在宏观尺度上,所有与不确定性原理兼容的非局部效应都可归因于数值密度(n)和有效温度(T)的高阶空间导数;(2) 作为特殊情况,可恢复文献中在量子玻尔兹曼气体和简并量子费米气体框架下得到的结果;(3) 明确纳入了不同简并度水平下量子费米气体和玻色气体的统计;(4) 明确给出并讨论了一组允许精确解析方程的相关应用;(5) 当(h→0)时,量子最大熵原理在经典极限下完全有效。