Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States.
Biochemistry. 2012 Feb 21;51(7):1369-79. doi: 10.1021/bi201793e. Epub 2012 Feb 8.
The SecA molecular nanomachine in bacteria uses energy from ATP hydrolysis to drive post-translational secretion of preproteins through the SecYEG translocon. Cytosolic SecA exists in a dimeric, "closed" state with relatively low ATPase activity. After binding to the translocon, SecA undergoes major conformational rearrangement, leading to a state that is structurally more "open", has elevated ATPase activity, and is active in translocation. The structural details underlying this conformational change in SecA remain incompletely defined. Most SecA crystal structures report on the cytosolic form; only one structure sheds light on a form of SecA that has engaged the translocon. We have used mild destabilization of SecA to trigger conformational changes that mimic those in translocation-active SecA and thus study its structural changes in a simplified, soluble system. Results from circular dichroism, tryptophan fluorescence, and limited proteolysis demonstrate that the SecA conformational reorganization involves disruption of several domain-domain interfaces, partial unfolding of the second nucleotide binding fold (NBF) II, partial dissociation of the helical scaffold domain (HSD) from NBF I and II, and restructuring of the 30 kDa C-terminal region. These changes account for the observed high translocation SecA ATPase activity because they lead to the release of an inhibitory C-terminal segment (called intramolecular regulator of ATPase 1, or IRA1) and of constraints on NBF II (or IRA2) that allow it to stimulate ATPase activity. The observed conformational changes thus position SecA for productive interaction with the SecYEG translocon and for transfer of segments of its passenger protein across the translocon.
细菌中的 SecA 分子纳米机器利用 ATP 水解的能量,驱动前蛋白穿过 SecYEG 转运通道进行翻译后分泌。细胞质中的 SecA 以二聚体的“关闭”状态存在,其 ATP 酶活性相对较低。与转运通道结合后,SecA 经历了主要的构象重排,导致其结构更加“开放”,ATP 酶活性升高,并在易位过程中活跃。SecA 构象变化的结构细节仍不完全明确。大多数 SecA 晶体结构报告的是细胞质形式;只有一种结构揭示了与已与转运通道结合的 SecA 形式。我们使用温和的 SecA 去稳定化来触发类似于易位活性 SecA 的构象变化,从而在简化的可溶性系统中研究其结构变化。圆二色性、色氨酸荧光和有限蛋白水解的结果表明,SecA 的构象重排涉及到几个结构域-结构域界面的破坏、第二个核苷酸结合折叠(NBF)II 的部分展开、螺旋支架结构域(HSD)与 NBF I 和 II 的部分解离以及 30 kDa C 端区域的结构重建。这些变化解释了观察到的高易位 SecA ATP 酶活性,因为它们导致抑制性 C 端片段(称为 ATP 酶 1 的内在调节剂或 IRA1)的释放以及对 NBF II(或 IRA2)的限制的解除,从而允许其刺激 ATP 酶活性。观察到的构象变化使 SecA 能够与 SecYEG 转运通道进行有效相互作用,并将其载体蛋白的片段转移穿过转运通道。