Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, MI 48073, USA.
Int J Radiat Oncol Biol Phys. 2012 Oct 1;84(2):485-91. doi: 10.1016/j.ijrobp.2011.11.053. Epub 2012 Feb 11.
To investigate the metabolic information provided by (18)F-fluorodeoxyglucose-positron emission tomography (FDG-PET) during the early response of head-and-neck squamous cell carcinoma (HNSCC) xenografts to radiotherapy (RT).
Low-passage HNSCC cells (UT14) were injected into the rear flanks of female nu/nu mice to generate xenografts. After tumors grew to 400-500 mm(3), they were treated with either 15 Gy in one fraction (n = 18) or sham RT (n = 12). At various time points after treatment, tumors were assessed with 2-h dynamic FDG-PET and immediately harvested for direct histological correlation. Different analytical parameters were used to process the dynamic PET data: kinetic index (Ki), standard uptake value (SUV), sensitivity factor (SF), and retention index (RI). Tumor growth was assessed using the specific growth rate (SGR) and correlated with PET parameters using the Pearson correlation coefficient (r). Receiver operating characteristic (ROC) and the area under the ROC curve (AUC) were used to test PET parameters for their ability to predict for radiation necrosis and radiation change.
Tumor growth was arrested for the first 20 days after RT and recovered thereafter. Histologically, radiation change was observed in the peripheral regions of tumors between days 7 and 23 after RT, and radiation necrosis were observed in the central regions of tumors between days 7 and 40. Ki provided the best correlation with SGR (r = 0.51) and was the optimal parameter to predict for early radiation necrosis (AUC = 0.804, p = 0.07). SUV(30 min) was the strongest predictor for late radiation necrosis (AUC = 0.959, p = 0.004). Both RI(30-60 min) and SF(12-70 min) were very accurate in predicting for radiation change (AUC = 0.891 and 0.875, p = 0.009 and 0.01, respectively).
Dynamic FDG-PET analysis (such as Ki or SF) may provide informative assessment of early radiation necrosis or radiation change of HNSCC xenografts after RT.
研究(18)F-氟代脱氧葡萄糖正电子发射断层扫描(FDG-PET)在头颈部鳞状细胞癌(HNSCC)异种移植对放射治疗(RT)的早期反应中提供的代谢信息。
低传代 HNSCC 细胞(UT14)被注入雌性无胸腺/无胸腺(nu/nu)小鼠的后腹侧以生成异种移植物。当肿瘤生长至 400-500mm3时,它们分别接受 15Gy 单次分割(n=18)或假 RT(n=12)治疗。在治疗后的不同时间点,使用 2 小时动态 FDG-PET 评估肿瘤,并立即进行直接组织学相关性分析。使用不同的分析参数处理动态 PET 数据:动力学指数(Ki)、标准摄取值(SUV)、灵敏度因子(SF)和保留指数(RI)。使用特定生长率(SGR)评估肿瘤生长,并使用 Pearson 相关系数(r)将其与 PET 参数相关联。使用接受者操作特征(ROC)和 ROC 曲线下面积(AUC)来测试 PET 参数预测放射坏死和放射变化的能力。
在 RT 后最初的 20 天内肿瘤生长被抑制,此后恢复。组织学上,在 RT 后 7 至 23 天观察到肿瘤外周区域的放射变化,在 RT 后 7 至 40 天观察到肿瘤中央区域的放射坏死。Ki 与 SGR 相关性最好(r=0.51),是预测早期放射坏死的最佳参数(AUC=0.804,p=0.07)。SUV(30min)是预测晚期放射坏死的最强预测因子(AUC=0.959,p=0.004)。RI(30-60min)和 SF(12-70min)在预测放射变化方面都非常准确(AUC=0.891 和 0.875,p=0.009 和 0.01)。
动态 FDG-PET 分析(如 Ki 或 SF)可能为 HNSCC 异种移植 RT 后早期放射坏死或放射变化提供有价值的评估。