University of Alabama, Birmingham, AL, USA.
Oper Dent. 2012 Jul-Aug;37(4):380-5. doi: 10.2341/11-212-L. Epub 2012 Feb 15.
Recent studies confirmed that resin-modified glass ionomers (RMGIs) set on the basis of two competing mechanisms, an acid-base reaction and a light-activated resin polymerization. This study evaluated the effect of the setting mechanism on bond strength by measuring the shear bond strength of three RMGIs to dentin with and without light activation.
Sixty human molars were ground to midcoronal dentin and randomly divided into six even groups: 1) Ketac Nano (KN), 2) KN without light cure (woLC), 3) Fuji Filling LC (FF), 4) FF woLC, 5) Fuji II LC (FII), and 6) FII woLC. The dentin surfaces of the specimens were conditioned/primed according to the manufacturers' instructions. A 1.54-mm diameter plastic tube was filled with RMGI material and affixed to the dentin surface. Groups 1, 3, and 5 were light cured for 20 seconds, and groups 2, 4, and 6 were immediately placed in a damp dark box with no light curing at 37°C for 24 hours. Shear bond strength testing was performed in an Instron device at 1 mm/min. Data were analyzed with a one-way analysis of variance (ANOVA) and Tukey/Kramer test (α=0.05).
Mean ± standard deviation shear bond strength values (MPa) are: 7.1 ± 4.2 (KN), 11.7 ± 3.9 (FF), 10.2 ± 3.2 (FF woLC), 12.5 ± 5.1 (FII), and 0.3 ± 0.4 (FII woLC). Two KN, all KN woLC, and seven FII woLC specimens debonded before testing. Tukey/Kramer analysis revealed no significant differences in bond strength between the three light-cured RMGIs. KN and FII showed significantly lower bond strength without light cure, but no significant difference was observed between FF and FF woLC.
The results of this study strongly suggest that light activation is necessary to obtain optimal bond strength between RMGI and dentin. FF may contain components that chemically activate resin polymerization. Clinically, KN and FII need to be light cured after placement of these RMGIs.
最近的研究证实,树脂改性玻璃离子体(RMGI)基于两种竞争机制进行固化,即酸碱反应和光激活树脂聚合。本研究通过测量三种 RMGI 与牙本质的剪切粘结强度,评估固化机制对粘结强度的影响,其中三种 RMGI 有光激活和无光激活两种情况。
将 60 个人类磨牙磨至中冠牙本质,并随机分为 6 组:1)Ketac Nano(KN),2)无光照固化的 KN(woLC),3)Fuji Filling LC(FF),4)无光照固化的 FF(FF woLC),5)Fuji II LC(FII),6)无光照固化的 FII(FII woLC)。根据制造商的说明对试件的牙本质表面进行处理/预处理。将 1.54mm 直径的塑料管装满 RMGI 材料并固定在牙本质表面。第 1、3 和 5 组用光照固化 20 秒,第 2、4 和 6 组在 37°C 的潮湿暗盒中立即放置 24 小时,无光照固化。在 Instron 设备上以 1mm/min 的速度进行剪切粘结强度测试。使用单向方差分析(ANOVA)和 Tukey/Kramer 检验(α=0.05)对数据进行分析。
平均±标准偏差剪切粘结强度值(MPa)为:7.1±4.2(KN),11.7±3.9(FF),10.2±3.2(FF woLC),12.5±5.1(FII)和 0.3±0.4(FII woLC)。有两个 KN、所有 KN woLC 和七个 FII woLC 试件在测试前就已经脱粘。Tukey/Kramer 分析显示,三种光固化 RMGI 之间的粘结强度没有显著差异。无光照固化的 KN 和 FII 的粘结强度明显较低,但 FF 和 FF woLC 之间没有观察到显著差异。
本研究结果强烈表明,光激活对于获得 RMGI 与牙本质之间的最佳粘结强度是必要的。FF 可能含有化学激活树脂聚合的成分。临床上,在放置这些 RMGI 后,KN 和 FII 需要进行光照固化。