Department of Psychiatry, Yale University, New Haven, CT 06508, USA.
Int J Neuropsychopharmacol. 2013 Feb;16(1):69-82. doi: 10.1017/S1461145712000016. Epub 2012 Feb 17.
Major depressive disorder (MDD) has been linked to changes in function and activity of the hippocampus, one of the central limbic regions involved in regulation of emotions and mood. The exact cellular and molecular mechanisms underlying hippocampal plasticity in response to stress are yet to be fully characterized. In this study, we examined the genetic profile of micro-dissected subfields of post-mortem hippocampus from subjects diagnosed with MDD and comparison subjects matched for sex, race and age. Gene expression profiles of the dentate gyrus and CA1 were assessed by 48K human HEEBO whole genome microarrays and a subgroup of identified genes was confirmed by real-time polymerase chain reaction (qPCR). Pathway analysis revealed altered expression of several gene families, including cytoskeletal proteins involved in rearrangement of neuronal processes. Based on this and evidence of hippocampal neuronal atrophy in MDD, we focused on the expression of cytoskeletal, synaptic and glutamate receptor genes. Our findings demonstrate significant dysregulation of synaptic function/structure related genes SNAP25, DLG2 (SAP93), and MAP1A, and 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl)propanoic acid receptor subunit genes GLUR1 and GLUR3. Several of these human target genes were similarly dysregulated in a rat model of chronic unpredictable stress and the effects reversed by antidepressant treatment. Together, these studies provide new evidence that disruption of synaptic and glutamatergic signalling pathways contribute to the pathophysiology underlying MDD and provide interesting targets for novel therapeutic interventions.
重度抑郁症(MDD)与海马体功能和活动的改变有关,海马体是参与调节情绪和心境的中央边缘区域之一。应激反应中海马体可塑性的确切细胞和分子机制尚未完全阐明。在这项研究中,我们检查了死后海马体微切割亚区的遗传特征,这些亚区来自被诊断为 MDD 的患者和性别、种族和年龄匹配的对照患者。通过 48K 人类 HEEBO 全基因组微阵列评估齿状回和 CA1 的基因表达谱,并用实时聚合酶链反应(qPCR)确认了一组鉴定的基因。通路分析显示,包括参与神经元过程重排的细胞骨架蛋白在内的几个基因家族的表达发生改变。基于这一点以及 MDD 中海马神经元萎缩的证据,我们重点研究了细胞骨架、突触和谷氨酸受体基因的表达。我们的研究结果表明,与突触功能/结构相关的基因 SNAP25、DLG2(SAP93)和 MAP1A 以及 2-氨基-3-(5-甲基-3-氧代-1,2-恶唑-4-基)丙氨酸受体亚基基因 GLUR1 和 GLUR3 的表达明显失调。这些人类靶基因中的几个在慢性不可预测应激的大鼠模型中也表现出类似的失调,抗抑郁治疗可逆转这些效应。总之,这些研究提供了新的证据,表明突触和谷氨酸能信号通路的破坏导致了 MDD 的病理生理学,并为新的治疗干预提供了有趣的靶点。