Alsteens David
Institute of Condensed Matter & Nanosciences, Université catholique de Louvain, Louvain-la-Neuve, Belgium.
Methods Enzymol. 2012;506:3-17. doi: 10.1016/B978-0-12-391856-7.00025-1.
Unraveling the structure of microbial cells is a major challenge in current microbiology and offers exciting prospects in biomedicine. Atomic force microscopy (AFM) appears as a powerful method to image the surface ultrastructure of live cells under physiological conditions and allows real-time imaging to follow dynamic processes such as cell growth, and division and effects of drugs and chemicals. The following chapter introduces different methods of sample preparation to gain insights into the microbial cell organization. Successful strategies to immobilize microorganisms, including physical entrapment and chemical attachment, are described. This step is a key step and a prerequisite of any analysis and persists as an important limitation to the application of AFM to microbiology due to the wide diversity of microorganisms. Finally, some applications are depicted which underlie the ability of AFM to explore living microbes with unprecedented resolution.
解析微生物细胞的结构是当前微生物学面临的一项重大挑战,同时也为生物医学带来了令人兴奋的前景。原子力显微镜(AFM)似乎是一种在生理条件下对活细胞表面超微结构进行成像的强大方法,它能够进行实时成像,以跟踪细胞生长、分裂以及药物和化学物质的作用等动态过程。以下章节介绍了不同的样品制备方法,以便深入了解微生物细胞的组织结构。文中描述了固定微生物的成功策略,包括物理包埋和化学附着。这一步骤是任何分析的关键步骤和前提条件,由于微生物种类繁多,它一直是AFM应用于微生物学的一个重要限制因素。最后,介绍了一些应用,这些应用体现了AFM以前所未有的分辨率探索活微生物的能力。