Suppr超能文献

用于固定金属亲和传感的微流控器件的原位制备。

In situ fabrication of a microfluidic device for immobilised metal affinity sensing.

机构信息

Department of Chemical Engineering and Biotechnology, University of Cambridge, UK.

出版信息

N Biotechnol. 2012 May 15;29(4):494-501. doi: 10.1016/j.nbt.2012.01.002. Epub 2012 Jan 28.

Abstract

In this work a novel microfluidic device was constructed in situ containing the smallest microscopic co-polymeric immobilised metal affinity (IMA) adsorbent yet documented. This device has for the first time allowed the microlitre scale chromatographic assay of histidine-tagged proteins in a biological sample. To enable this approach, rather than using a high capacity commercial packed bed column which requires large sample volumes and would be susceptible to occlusion by cell debris, a microgram capacity co-polymeric chromatographic substrate suitable for analytical applications was fabricated within a microfluidic channel. This porous co-polymeric IMA micro-chromatographic element, only 27μl in volume, was assessed for the analytical capture of two different histidine-tagged recombinant fusion proteins. The micro-chromatographic adsorber was fabricated in situ by photo-polymerising an iminodiacetic acid (IDA) functionalised polymer matrix around a template of fused 100μm diameter NH(4)Cl particles entirely within the microfluidic channel and then etching away the salt with water to form a network of interconnected voids. The surface of the micro-chromatographic adsorber was chemically functionalised with a chelating agent and loaded with Cu(2+) ions. FTIR and NMR analysis verified the presence of the chelating agent on the adsorbent surface and its Cu(2+) ion binding capacity was determined to be 2.4μmol Cu(2+) (ml of adsorbent)(-1). Micro-scale equilibrium adsorption studies using the two different histidine-tagged proteins, LacI-His(6)-GFP and α-Synuclein-His(8)-YFP, were carried out and the protein binding capacity of the adsorbent was determined to be 0.370 and 0.802mg(g of adsorbent)(-1), respectively. The dynamic binding capacity was determined at four different flow rates and found to be comparable to the equilibrium binding capacity at low flow rates. The sensing platform was also used to adsorb LacI-His(6)-GFP protein from crude cell lysate. During adsorption, laser scanning confocal microscopy identified locations within the adsorbent where protein adsorption and desorption occurred. The findings indicate that minimal channelling, selective product capture and near quantitative elution of the captured (adsorbed) product could be achieved, supporting the application of this new device as a high-throughput process analytical tool (PAT) for the in-process monitoring of histidine-tagged proteins in manufacturing.

摘要

在这项工作中,构建了一种新型的微流控装置,其中包含了迄今为止记录到的最小的微观共聚固定化金属亲和(IMA)吸附剂。该装置首次允许在生物样品中对组氨酸标记的蛋白质进行微升规模的色谱分析。为了实现这一目标,我们没有使用大容量的商业填充床柱,因为这种柱子需要大体积的样品,而且容易被细胞碎片堵塞,而是在微流道内制造了一种适用于分析应用的微克容量共聚色谱基质。这种多孔共聚 IMA 微色谱元件体积仅为 27μl,用于分析捕获两种不同的组氨酸标记的重组融合蛋白。微色谱吸附剂是通过在微流道内围绕融合的 100μm 直径 NH(4)Cl 颗粒模板光聚合一个亚氨基二乙酸(IDA)功能化聚合物基质原位制造的,然后用水蚀刻掉盐,形成相互连接的空隙网络。微色谱吸附剂的表面用螯合剂进行化学功能化,并负载 Cu(2+)离子。FTIR 和 NMR 分析证实了吸附剂表面存在螯合剂,其 Cu(2+)离子结合能力为 2.4μmol Cu(2+)(ml 吸附剂)(-1)。使用两种不同的组氨酸标记的蛋白质,LacI-His(6)-GFP 和 α-Synuclein-His(8)-YFP,进行微尺度平衡吸附研究,确定吸附剂的蛋白质结合能力分别为 0.370 和 0.802mg(g 吸附剂)(-1)。在四个不同的流速下测定动态结合容量,发现其在低流速下与平衡结合容量相当。该传感平台还用于从粗细胞裂解液中吸附 LacI-His(6)-GFP 蛋白质。在吸附过程中,激光扫描共聚焦显微镜确定了吸附剂中蛋白质吸附和脱附发生的位置。研究结果表明,可以实现最小的通道化、选择性产物捕获和捕获(吸附)产物的近乎定量洗脱,支持将这种新装置作为一种高通量过程分析工具(PAT)应用于制造过程中组氨酸标记的蛋白质的在线监测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验