State Key Laboratory of Urban Water Resource and Environment, No. 73 Huanghe Road, Nangang District, Harbin 150090, China.
Bioresour Technol. 2012 Apr;110:273-7. doi: 10.1016/j.biortech.2012.01.121. Epub 2012 Jan 30.
Scaling up microbial fuel cells (MFCs) will require more compact reactor designs. Spacers can be used to minimize the reactor size without adversely affecting performance. A single 1.5mm expanded plastic spacer (S1.5) produced a maximum power density (973±26mWm(-2)) that was similar to that of an MFC with the cathode exposed directly to air (no spacer). However, a very thin spacer (1.3mm) reduced power by 33%. Completely covering the air cathode with a solid plate did not eliminate power generation, indicating oxygen leakage into the reactor. The S1.5 spacer slightly increased columbic efficiencies (from 20% to 24%) as a result of reduced oxygen transfer into the system. Based on operating conditions (1000Ω, CE=20%), it was estimated that 0.9Lh(-1) of air would be needed for 1m(2) of cathode area suggesting active air flow may be needed for larger scale MFCs.
扩大微生物燃料电池 (MFC) 需要更紧凑的反应器设计。间隔物可用于在不影响性能的情况下最小化反应器尺寸。单个 1.5mm 扩展塑料间隔物 (S1.5) 产生的最大功率密度 (973±26mWm(-2)) 与阴极直接暴露于空气的 MFC 相似 (无间隔物)。然而,非常薄的间隔物 (1.3mm) 会降低 33%的功率。完全用固体板覆盖空气阴极并不会消除发电,表明氧气会泄漏到反应器中。S1.5 间隔物略微提高了库仑效率 (从 20%提高到 24%),这是由于进入系统的氧气转移减少所致。根据操作条件 (1000Ω,CE=20%),估计 1m(2) 的阴极面积需要 0.9Lh(-1) 的空气,这表明对于更大规模的 MFC 可能需要主动空气流动。