Suppr超能文献

下丘脑中处理动态耳间强度差异的回路。

Circuits for processing dynamic interaural intensity disparities in the inferior colliculus.

机构信息

Section of Neurobiology, 337 Patterson Laboratory Building, The University of Texas at Austin, Austin, TX 78712, USA.

出版信息

Hear Res. 2012 Jun;288(1-2):47-57. doi: 10.1016/j.heares.2012.01.011. Epub 2012 Feb 8.

Abstract

Interaural intensity disparities (IIDs), the cues all animals use to localize high frequency sounds, are initially processed in the lateral superior olive (LSO) by a subtractive process where inputs from one ear excite and inputs from the other ear inhibit LSO neurons. Such cells are called excitatory-inhibitory (EI) neurons and are prominent not only in the LSO but also in higher nuclei, which include the dorsal nucleus of the lateral lemniscus (DNLL) and inferior colliculus (IC). The IC is of particular interest since its EI cells receive diverse innervation patterns from a large number of lower nuclei, which include the DNLLs and LSOs, and thus comprise a population with diverse binaural properties. The first part of this review focuses on the circuits that create EI cells in the LSO, DNLL and IC. The second section then turns to the responses evoked by dynamic IIDs that change over time, as with multiple sounds that emanate from different regions of space or moving sound sources. I show that many EI neurons in the IC respond to dynamic IIDs in ways that are not predictable from their responses to static IIDs, IIDs presented one at a time. In the final section, results from in vivo whole cell recording in the IC are presented and address the connectional basis for the responsiveness to dynamic IIDs. The principal conclusion is that EI cells comprise a diverse population. The diversity is created by the particular set of inputs each EI type receives and is expressed in the differences in the responses to dynamic IIDs that are generated by those inputs. These results show that the construction of EI neurons in the IC imparts features that not only encode the location of an individual sound source, but also that allow animals to determine the direction of a moving sound and to focus and localize a single sound in midst of many sounds, as typically occurs in the daily lives of all animals.

摘要

两耳强度差(IIDs)是所有动物用来定位高频声音的线索,最初在外侧上橄榄核(LSO)中通过一个减法过程进行处理,其中一只耳朵的输入兴奋,另一只耳朵的输入抑制 LSO 神经元。这种细胞被称为兴奋-抑制(EI)神经元,不仅在 LSO 中很突出,而且在更高的核中也很突出,包括外侧丘系背核(DNLL)和下丘(IC)。IC 特别有趣,因为它的 EI 细胞接收来自大量低级核的不同传入模式,包括 DNLL 和 LSO,因此构成了一个具有不同双耳特性的群体。这篇综述的第一部分重点介绍了在 LSO、DNLL 和 IC 中产生 EI 细胞的回路。第二部分然后转向了由随时间变化的动态 IIDs 引起的反应,就像来自空间不同区域或移动声源的多个声音一样。我表明,IC 中的许多 EI 神经元对动态 IIDs 的反应方式与对静态 IIDs 的反应方式不同,静态 IIDs 一次呈现一个。在最后一节中,呈现了在 IC 中进行的体内全细胞记录的结果,并解决了对动态 IIDs 反应的连接基础。主要结论是 EI 细胞构成了一个多样化的群体。这种多样性是由每个 EI 类型接收的特定输入集创建的,并体现在由这些输入生成的对动态 IIDs 的反应差异中。这些结果表明,IC 中 EI 神经元的构建赋予了不仅可以编码单个声源位置的特征,还可以使动物确定移动声源的方向,并在许多声音中聚焦和定位单个声音,这在所有动物的日常生活中通常会发生。

相似文献

1
Circuits for processing dynamic interaural intensity disparities in the inferior colliculus.
Hear Res. 2012 Jun;288(1-2):47-57. doi: 10.1016/j.heares.2012.01.011. Epub 2012 Feb 8.
2
Roles of inhibition for transforming binaural properties in the brainstem auditory system.
Hear Res. 2002 Jun;168(1-2):60-78. doi: 10.1016/s0378-5955(02)00362-3.
4
Binaural processing in the dorsal nucleus of the lateral lemniscus.
Hear Res. 1994 Feb;73(1):121-40. doi: 10.1016/0378-5955(94)90290-9.
8
9
Processing of interaural intensity differences in the LSO: role of interaural threshold differences.
J Neurophysiol. 1997 Jun;77(6):2863-78. doi: 10.1152/jn.1997.77.6.2863.

引用本文的文献

1
Absence of the Fragile X messenger ribonucleoprotein alters response patterns to sounds in the auditory midbrain.
Front Neurosci. 2022 Sep 16;16:987939. doi: 10.3389/fnins.2022.987939. eCollection 2022.
2
Adaptive Response Behavior in the Pursuit of Unpredictably Moving Sounds.
eNeuro. 2021 May 6;8(3). doi: 10.1523/ENEURO.0556-20.2021. Print 2021 May-Jun.
3
Specific loss of neural sensitivity to interaural time difference of unmodulated noise stimuli following noise-induced hearing loss.
J Neurophysiol. 2020 Oct 1;124(4):1165-1182. doi: 10.1152/jn.00349.2020. Epub 2020 Aug 26.
4
Neuroprotective activation of astrocytes by methylmercury exposure in the inferior colliculus.
Sci Rep. 2019 Sep 25;9(1):13899. doi: 10.1038/s41598-019-50377-9.
5
The Calyx of Held: A Hypothesis on the Need for Reliable Timing in an Intensity-Difference Encoder.
Neuron. 2018 Nov 7;100(3):534-549. doi: 10.1016/j.neuron.2018.10.026.
6
Spatial Processing Is Frequency Specific in Auditory Cortex But Not in the Midbrain.
J Neurosci. 2017 Jul 5;37(27):6588-6599. doi: 10.1523/JNEUROSCI.3034-16.2017. Epub 2017 May 30.
7
Slow Temporal Integration Enables Robust Neural Coding and Perception of a Cue to Sound Source Location.
J Neurosci. 2016 Sep 21;36(38):9908-21. doi: 10.1523/JNEUROSCI.1421-16.2016.
8
Plastic Change in the Auditory Minimum Threshold Induced by Intercollicular Effects in Mice.
Neural Plast. 2016;2016:4195391. doi: 10.1155/2016/4195391. Epub 2016 Jan 17.
9
Sound frequency-invariant neural coding of a frequency-dependent cue to sound source location.
J Neurophysiol. 2015 Jul;114(1):531-9. doi: 10.1152/jn.00062.2015. Epub 2015 May 13.
10
Effect of background noise on neuronal coding of interaural level difference cues in rat inferior colliculus.
Eur J Neurosci. 2015 Jul;42(1):1685-704. doi: 10.1111/ejn.12914. Epub 2015 May 6.

本文引用的文献

1
It's about time: how input timing is used and not used to create emergent properties in the auditory system.
J Neurosci. 2011 Feb 16;31(7):2576-83. doi: 10.1523/JNEUROSCI.5112-10.2011.
3
Differential patterns of inputs create functional zones in central nucleus of inferior colliculus.
J Neurosci. 2010 Oct 6;30(40):13396-408. doi: 10.1523/JNEUROSCI.0338-10.2010.
4
Adaptation to stimulus statistics in the perception and neural representation of auditory space.
Neuron. 2010 Jun 24;66(6):937-48. doi: 10.1016/j.neuron.2010.05.018.
6
Interaural level difference discrimination thresholds for single neurons in the lateral superior olive.
J Neurosci. 2008 May 7;28(19):4848-60. doi: 10.1523/JNEUROSCI.5421-07.2008.
7
The precedence effect in sound localization.
Am J Psychol. 1949 Jul;62(3):315-36.
8
Rethinking tuning: in vivo whole-cell recordings of the inferior colliculus in awake bats.
J Neurosci. 2007 Aug 29;27(35):9469-81. doi: 10.1523/JNEUROSCI.2865-07.2007.
9
Inhibiting the inhibition: a neuronal network for sound localization in reverberant environments.
J Neurosci. 2007 Feb 14;27(7):1782-90. doi: 10.1523/JNEUROSCI.5335-06.2007.
10
Differing roles of inhibition in hierarchical processing of species-specific calls in auditory brainstem nuclei.
J Neurophysiol. 2005 Dec;94(6):4019-37. doi: 10.1152/jn.00688.2005. Epub 2005 Aug 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验