Suppr超能文献

转运体介导的外排影响中枢神经系统副作用:ABCB1,从非靶点到靶点。

Transporter-mediated Efflux Influences CNS Side Effects: ABCB1, from Antitarget to Target.

作者信息

Broccatelli Fabio, Carosati Emanuele, Cruciani Gabriele, Oprea Tudor I

机构信息

Laboratory for Chemometrics, Department of Chemistry, University of Perugia, Via Elce di Soto 10, 06100 Perugia, Italy.

出版信息

Mol Inform. 2010 Jan 12;29(1-2):16-26. doi: 10.1002/minf.200900075.

Abstract

We examined the relationship between sedation and orthostatic hypotension, two central side effects and ABCB1 transporter-mediated efflux for a set of 64 launched drugs that are documented as histamine H1 receptor antagonists. This relationship was placed in the context of passive diffusion (estimated using LogP, the octanol/water partition coefficient), receptor affinity, and the adjusted therapeutic daily dose, in order to account for side effect variability. Within this set, CNS permeability was not dependent on passive diffusion, as no significant differences were found for LogP and its pH-corrected equivalent, LogD(74). Sedation and orthostatic hypotension can be explained within the framework of ABCB1-mediated efflux and adjusted dose, while target potency has less influence. ABCB1, an antitarget for anti-cancer agents, acts in fact as a drug target for non-sedating antihistamines. An empirical set of rules, based on the incidence of these two side-effects, target affinity and dose was used to predict efflux effects for a number of drugs. Among them, azelastine and mizolastine are predicted to be effluxed via ABCB1-mediated transport, whereas aripiprazole, clozapine, cyproheptadine, iloperidone, olanzapine, and ziprasidone are likely to be non-effluxed.

摘要

我们研究了镇静作用与体位性低血压这两种主要副作用之间的关系,以及一组64种已上市的组胺H1受体拮抗剂药物的ABCB1转运体介导的外排作用。为了解释副作用的变异性,将这种关系置于被动扩散(用LogP即辛醇/水分配系数估算)、受体亲和力和调整后的治疗日剂量的背景下。在这组药物中,中枢神经系统通透性不依赖于被动扩散,因为LogP及其pH校正后的等效值LogD(74)没有显著差异。镇静作用和体位性低血压可以在ABCB1介导的外排作用和调整剂量的框架内得到解释,而靶点效力的影响较小。ABCB1是抗癌药物的一个反靶点,实际上它是无镇静作用的抗组胺药的一个药物靶点。基于这两种副作用的发生率、靶点亲和力和剂量,使用一组经验规则来预测多种药物的外排作用。其中,氮卓斯汀和咪唑斯汀预计会通过ABCB1介导的转运而外排,而阿立哌唑、氯氮平、赛庚啶、伊潘立酮、奥氮平和齐拉西酮可能不会被外排。

相似文献

1
Transporter-mediated Efflux Influences CNS Side Effects: ABCB1, from Antitarget to Target.
Mol Inform. 2010 Jan 12;29(1-2):16-26. doi: 10.1002/minf.200900075.
4
The impact of P-glycoprotein mediated efflux on absorption of 11 sedating and less-sedating antihistamines using Caco-2 monolayers.
Xenobiotica. 2012 Jun;42(6):538-49. doi: 10.3109/00498254.2011.643256. Epub 2011 Dec 22.
5
Variations among non-sedating antihistamines: are there real differences?
Eur J Clin Pharmacol. 1999 Apr;55(2):85-93. doi: 10.1007/s002280050600.
6
Risperidone versus other atypical antipsychotics for schizophrenia.
Cochrane Database Syst Rev. 2011 Jan 19;2011(1):CD006626. doi: 10.1002/14651858.CD006626.pub2.
9
Olanzapine versus other atypical antipsychotics for schizophrenia.
Cochrane Database Syst Rev. 2010 Mar 17;2010(3):CD006654. doi: 10.1002/14651858.CD006654.pub2.
10
The clinical pharmacology of non-sedating antihistamines.
Pharmacol Ther. 2017 Oct;178:148-156. doi: 10.1016/j.pharmthera.2017.04.004. Epub 2017 Apr 27.

引用本文的文献

1
2B Determined: The Future of the Serotonin Receptor 2B in Drug Discovery.
J Med Chem. 2023 Aug 24;66(16):11027-11039. doi: 10.1021/acs.jmedchem.3c01178. Epub 2023 Aug 16.
5
ABCB1 in dermatology: roles in skin diseases and their treatment.
J Mol Med (Berl). 2021 Nov;99(11):1527-1538. doi: 10.1007/s00109-021-02105-y. Epub 2021 Aug 9.
7
Impact of the Recent Mouse P-Glycoprotein Structure for Structure-Based Ligand Design.
Mol Inform. 2010 Apr 12;29(4):276-86. doi: 10.1002/minf.201000017. Epub 2010 Apr 20.
8
International Union of Basic and Clinical Pharmacology. XCVIII. Histamine Receptors.
Pharmacol Rev. 2015 Jul;67(3):601-55. doi: 10.1124/pr.114.010249.
9
Ligand Promiscuity between the Efflux Pumps Human P-Glycoprotein and S. aureus NorA.
ACS Med Chem Lett. 2012 Jan 23;3(3):248-51. doi: 10.1021/ml200293c. eCollection 2012 Mar 8.
10
Improving the prediction of the brain disposition for orally administered drugs using BDDCS.
Adv Drug Deliv Rev. 2012 Jan;64(1):95-109. doi: 10.1016/j.addr.2011.12.008. Epub 2011 Dec 21.

本文引用的文献

1
Integration of virtual and physical screening.
Drug Discov Today Technol. 2006 Winter;3(4):377-385. doi: 10.1016/j.ddtec.2006.11.003. Epub 2006 Dec 14.
2
A chemogenomic approach to drug discovery: focus on cardiovascular diseases.
Drug Discov Today. 2009 May;14(9-10):479-85. doi: 10.1016/j.drudis.2009.02.010. Epub 2009 Mar 5.
3
IUPHAR-DB: the IUPHAR database of G protein-coupled receptors and ion channels.
Nucleic Acids Res. 2009 Jan;37(Database issue):D680-5. doi: 10.1093/nar/gkn728. Epub 2008 Oct 23.
4
In vitro P-glycoprotein assays to predict the in vivo interactions of P-glycoprotein with drugs in the central nervous system.
Drug Metab Dispos. 2008 Feb;36(2):268-75. doi: 10.1124/dmd.107.017434. Epub 2007 Oct 25.
5
Atypical antipsychotics: new drugs, new challenges.
Cleve Clin J Med. 2007 Aug;74(8):597-606. doi: 10.3949/ccjm.74.8.597.
7
Single nucleotide polymorphisms in ABCC2 and ABCB1 genes and their clinical impact in physiology and drug response.
Cancer Lett. 2006 Mar 8;234(1):40-50. doi: 10.1016/j.canlet.2005.06.050. Epub 2005 Dec 27.
9
Keynote review: in vitro safety pharmacology profiling: an essential tool for successful drug development.
Drug Discov Today. 2005 Nov 1;10(21):1421-33. doi: 10.1016/S1359-6446(05)03632-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验