Suppr超能文献

相似文献

1
Anion sensitivity and spectral tuning of middle- and long-wavelength-sensitive (MWS/LWS) visual pigments.
Cell Mol Life Sci. 2012 Jul;69(14):2455-64. doi: 10.1007/s00018-012-0934-4. Epub 2012 Feb 15.
3
Molecular basis of spectral tuning in the red- and green-sensitive (M/LWS) pigments in vertebrates.
Genetics. 2008 Aug;179(4):2037-43. doi: 10.1534/genetics.108.090449. Epub 2008 Jul 27.
4
Mechanism of spectral tuning in the dolphin visual pigments.
Biochemistry. 1998 Jan 13;37(2):433-8. doi: 10.1021/bi972500j.
5
Cone visual pigments of aquatic mammals.
Vis Neurosci. 2005 Nov-Dec;22(6):873-9. doi: 10.1017/S0952523805226159.
8
The retinal pigments of the whale shark () and their role in visual foraging ecology.
Vis Neurosci. 2019 Nov 13;36:E011. doi: 10.1017/S0952523819000105.
9
Chloride-dependent spectral tuning mechanism of L-group cone visual pigments.
Biochemistry. 2013 Feb 19;52(7):1192-7. doi: 10.1021/bi3016058. Epub 2013 Feb 5.
10
Spectral tuning of the long wavelength-sensitive cone pigment in four Australian marsupials.
Gene. 2006 Oct 15;381:13-7. doi: 10.1016/j.gene.2006.06.001. Epub 2006 Jun 21.

引用本文的文献

1
Visual adaptation of opsin genes to the aquatic environment in sea snakes.
BMC Evol Biol. 2020 Nov 26;20(1):158. doi: 10.1186/s12862-020-01725-1.
2
Short-wavelength-sensitive 2 (Sws2) visual photopigment models combined with atomistic molecular simulations to predict spectral peaks of absorbance.
PLoS Comput Biol. 2020 Oct 21;16(10):e1008212. doi: 10.1371/journal.pcbi.1008212. eCollection 2020 Oct.
4
Hypothesis on monochromatic vision in scorpionflies questioned by new transcriptomic data.
Sci Rep. 2018 Jun 29;8(1):9872. doi: 10.1038/s41598-018-28098-2.
5
Evolution of Vertebrate Phototransduction: Cascade Activation.
Mol Biol Evol. 2016 Aug;33(8):2064-87. doi: 10.1093/molbev/msw095. Epub 2016 May 11.
6
Cone monochromacy and visual pigment spectral tuning in wobbegong sharks.
Biol Lett. 2012 Dec 23;8(6):1019-22. doi: 10.1098/rsbl.2012.0663. Epub 2012 Sep 19.

本文引用的文献

1
Adaptive gene loss reflects differences in the visual ecology of basal vertebrates.
Mol Biol Evol. 2009 Aug;26(8):1803-9. doi: 10.1093/molbev/msp089. Epub 2009 Apr 27.
3
Protein structure homology modeling using SWISS-MODEL workspace.
Nat Protoc. 2009;4(1):1-13. doi: 10.1038/nprot.2008.197.
4
Functional characterization, tuning, and regulation of visual pigment gene expression in an anadromous lamprey.
FASEB J. 2007 Sep;21(11):2713-24. doi: 10.1096/fj.06-8057com. Epub 2007 Apr 26.
5
Phototransduction, dark adaptation, and rhodopsin regeneration the proctor lecture.
Invest Ophthalmol Vis Sci. 2006 Dec;47(12):5137-52. doi: 10.1167/iovs.06-0849.
6
Spectral tuning of the long wavelength-sensitive cone pigment in four Australian marsupials.
Gene. 2006 Oct 15;381:13-7. doi: 10.1016/j.gene.2006.06.001. Epub 2006 Jun 21.
7
The visual pigments of the West Indian manatee (Trichechus manatus).
Vision Res. 2006 Oct;46(20):3326-30. doi: 10.1016/j.visres.2006.03.010. Epub 2006 May 2.
8
Cone visual pigments of aquatic mammals.
Vis Neurosci. 2005 Nov-Dec;22(6):873-9. doi: 10.1017/S0952523805226159.
9
The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling.
Bioinformatics. 2006 Jan 15;22(2):195-201. doi: 10.1093/bioinformatics/bti770. Epub 2005 Nov 13.
10
Breaking the covalent bond--a pigment property that contributes to desensitization in cones.
Neuron. 2005 Jun 16;46(6):879-90. doi: 10.1016/j.neuron.2005.05.009.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验