Suppr超能文献

超支化聚合物“星形载体”用于有效递送 DNA 或 siRNA。

Hyperbranched polymeric "star vectors" for effective DNA or siRNA delivery.

机构信息

Division of Medical Engineering and Materials, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan.

出版信息

Acc Chem Res. 2012 Jul 17;45(7):994-1004. doi: 10.1021/ar200220t. Epub 2012 Feb 21.

Abstract

Although gene therapy offers an attractive strategy for treating inherited disorders, current techniques using viral and nonviral delivery systems have not yielded many successful results in clinical trials. Viral vectors such as retroviruses, lentiviruses, and adenoviruses deliver genes efficiently; however, the possibility of negative outcomes from viral transformation cannot be completely ruled out. In contrast, various types of nonviral vectors are attracting considerable attention because they are easier to handle and induce weak immune responses. Cationic polymers, such as polyethylenimine (PEI) and poly(N,N-dimethylaminopropyl acrylamide) (PDMAPAAm), can generate nanoparticles through the formation of polyion complexes, "polyplexes" with DNA. These nonviral systems offer many advantages over viral systems. The primary obstacle to implementing these cationic polymers in an effective gene therapy remains their comparatively inefficient gene transfection in vivo. We describe four strategies for the development of hyperbranched star vectors (SVs) for enhancing DNA or siRNA delivery. The molecular design was performed by living radical polymerization in which the chain length can be controlled by photoirradiation and solution conditions, including concentrations of the monomer or iniferter (a molecule that serves as a combination of initiator, transfer agent, and terminator). The branch composition is controlled by the types of monomers that are added stepwise. In our first strategy, we prepared a series of only cationic PDMAPAAm-based SVs with no branches or 3, 4, or 6 branching numbers. These SVs could form polyion complexes (polyplexes) by mixing with DNA only in aqueous solution. The relative gene expression activity of the delivered DNA increased according to the degree of branching. In addition, increasing the molecular weight of SVs and narrowing their polydispersity index (PDI) improved their activity. For targeting DNA delivery to the specific cells, we modified the SV with ligands. Interestingly, the SV could adsorb the RGD peptide, making gene transfer possible in endothelial cells which are usually refractory to such treatments. The peptide was added to the polyplex solution without covalent derivatization to the SV. The introduction of additional branching by cross-linking using iniferter-induced coupling reactions further improved gene transfection activity. After block copolymerization of PDMAPAAm-based SVs with a nonionic monomer (DMAAm), the blocked SVs (BSVs) produced polyplexes with DNA that had excellent colloidal stability for 1 month, leading to efficient in vitro and in vivo gene delivery. Moreover, BSVs served as carriers for siRNA delivery. BSVs enhanced siRNA-mediated gene silencing in mouse liver and lung. As an alternative approach, we developed a novel gene transfection method in which the polyplexes were kept in contact with their deposition surface by thermoresponsive blocking of the SV. This strategy was more effective than reverse transfection and the conventional transfection methods in solution.

摘要

虽然基因治疗为治疗遗传性疾病提供了一种有吸引力的策略,但目前使用病毒和非病毒传递系统的技术在临床试验中并没有产生许多成功的结果。病毒载体,如逆转录病毒、慢病毒和腺病毒,高效传递基因;然而,病毒转化的负面结果的可能性不能完全排除。相比之下,各种类型的非病毒载体引起了相当大的关注,因为它们更容易处理并引起较弱的免疫反应。阳离子聚合物,如聚乙烯亚胺(PEI)和聚(N,N-二甲基氨基丙基丙烯酰胺)(PDMAPAAm),可以通过形成聚离子复合物“聚阳离子”来生成纳米颗粒与 DNA。这些非病毒系统比病毒系统具有许多优势。将这些阳离子聚合物有效地应用于基因治疗的主要障碍仍然是其在体内相对低效的基因转染。我们描述了四种用于增强 DNA 或 siRNA 递送的超支化星形载体(SV)的开发策略。分子设计通过自由基聚合进行,其链长可以通过光辐照和溶液条件(包括单体或引发剂(一种充当引发剂、转移剂和终止剂的组合的分子)的浓度)来控制。分支组成由逐步添加的单体类型控制。在我们的第一个策略中,我们仅制备了一系列不带分支或 3、4 或 6 个分支数的仅阳离子 PDMAPAAm 基 SV。这些 SV 可以仅在水溶液中与 DNA 混合形成聚离子复合物(多聚物)。所递送的 DNA 的相对基因表达活性根据分支程度而增加。此外,增加 SV 的分子量并缩小其多分散指数(PDI)可提高其活性。为了将 DNA 靶向递送到特定的细胞,我们用配体修饰了 SV。有趣的是,SV 可以吸附 RGD 肽,使得基因转移成为可能,内皮细胞通常对此类治疗有抗性。肽是在没有共价衍生化为 SV 的情况下添加到多聚物溶液中的。使用引发剂诱导的偶联反应进行交联引入额外的分支进一步提高了基因转染活性。在基于 PDMAPAAm 的 SV 与非离子单体(DMAAm)的嵌段共聚之后,产生的嵌段 SV(BSV)与 DNA 形成多聚物,该多聚物在 1 个月内具有出色的胶体稳定性,从而实现了有效的体外和体内基因递送。此外,BSV 可作为 siRNA 递送的载体。BSV 增强了小鼠肝脏和肺部的 siRNA 介导的基因沉默。作为替代方法,我们开发了一种新的基因转染方法,其中通过 SV 的热敏阻断使多聚物与沉积表面保持接触。这种策略比反转录和常规溶液转染方法更有效。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验