National Institute of Communication Telecommunication, 2-2-2 Hikaridai Seika-cho, Soraku-gun, Kyoto 619-0288, Japan.
Neural Netw. 2012 May;29-30:8-19. doi: 10.1016/j.neunet.2012.01.002. Epub 2012 Jan 25.
In this study, we propose an extension of the MOSAIC architecture to control real humanoid robots. MOSAIC was originally proposed by neuroscientists to understand the human ability of adaptive control. The modular architecture of the MOSAIC model can be useful for solving nonlinear and non-stationary control problems. Both humans and humanoid robots have nonlinear body dynamics and many degrees of freedom. Since they can interact with environments (e.g., carrying objects), control strategies need to deal with non-stationary dynamics. Therefore, MOSAIC has strong potential as a human motor-control model and a control framework for humanoid robots. Yet application of the MOSAIC model has been limited to simple simulated dynamics since it is susceptive to observation noise and also cannot be applied to partially observable systems. Our approach introduces state estimators into MOSAIC architecture to cope with real environments. By using an extended MOSAIC model, we are able to successfully generate squatting and object-carrying behaviors on a real humanoid robot.
在这项研究中,我们提出了一种 MOSAIC 架构的扩展,以控制真实的人形机器人。MOSAIC 最初是由神经科学家提出的,用于理解人类自适应控制的能力。MOSAIC 模型的模块化架构对于解决非线性和非平稳控制问题非常有用。人类和人形机器人都具有非线性的身体动力学和多个自由度。由于它们可以与环境(例如,搬运物体)相互作用,因此控制策略需要处理非平稳动力学。因此,MOSAIC 作为人类运动控制模型和人形机器人的控制框架具有很强的潜力。然而,由于 MOSAIC 模型易受观测噪声的影响,并且不能应用于部分可观测系统,因此它的应用仅限于简单的模拟动力学。我们的方法将状态估计器引入 MOSAIC 架构中,以应对真实环境。通过使用扩展的 MOSAIC 模型,我们能够成功地在真实的人形机器人上生成蹲伏和搬运物体的行为。