Suppr超能文献

手形特征的变换用于生物识别方法。

Transformation of hand-shape features for a biometric identification approach.

机构信息

Signals and Communication Department, Institute for Technological Development and Innovation in Communications, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria 35017, Spain.

出版信息

Sensors (Basel). 2012;12(1):987-1001. doi: 10.3390/s120100987. Epub 2012 Jan 16.

Abstract

The present work presents a biometric identification system for hand shape identification. The different contours have been coded based on angular descriptions forming a Markov chain descriptor. Discrete Hidden Markov Models (DHMM), each representing a target identification class, have been trained with such chains. Features have been calculated from a kernel based on the HMM parameter descriptors. Finally, supervised Support Vector Machines were used to classify parameters from the DHMM kernel. First, the system was modelled using 60 users to tune the DHMM and DHMM_kernel+SVM configuration parameters and finally, the system was checked with the whole database (GPDS database, 144 users with 10 samples per class). Our experiments have obtained similar results in both cases, demonstrating a scalable, stable and robust system. Our experiments have achieved an upper success rate of 99.87% for the GPDS database using three hand samples per class in training mode, and seven hand samples in test mode. Secondly, the authors have verified their algorithms using another independent and public database (the UST database). Our approach has reached 100% and 99.92% success for right and left hand, respectively; showing the robustness and independence of our algorithms. This success was found using as features the transformation of 100 points hand shape with our DHMM kernel, and as classifier Support Vector Machines with linear separating functions, with similar success.

摘要

本工作提出了一种用于手形识别的生物识别系统。不同的轮廓已经基于形成马尔可夫链描述符的角度描述进行了编码。离散隐马尔可夫模型(DHMM),每个代表一个目标识别类,已经使用这些链进行了训练。特征是从基于 HMM 参数描述符的核中计算得出的。最后,使用监督支持向量机对 DHMM 核中的参数进行分类。首先,使用 60 个用户对系统进行建模,以调整 DHMM 和 DHMM_kernel+SVM 配置参数,最后,使用整个数据库(GPDS 数据库,每个类 10 个样本,共 144 个用户)对系统进行检查。我们的实验在两种情况下都得到了相似的结果,证明了该系统具有可扩展性、稳定性和鲁棒性。我们的实验在训练模式下,每个类使用三个手样本,测试模式下使用七个手样本,在 GPDS 数据库中获得了高达 99.87%的成功率。其次,作者使用另一个独立的公共数据库(UST 数据库)验证了他们的算法。我们的方法在右手和左手分别达到了 100%和 99.92%的成功率,证明了我们算法的鲁棒性和独立性。该成功是使用我们的 DHMM 核的 100 个点手形变换作为特征,以及使用具有线性分离函数的支持向量机作为分类器获得的,具有相似的成功率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3c2/3279250/10dbf7efc349/sensors-12-00987f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验