Suppr超能文献

昆虫膨压素配体-受体系统中氨基酸序列的共进化。

Amino acid sequence coevolution in the insect bursicon ligand-receptor system.

机构信息

Department of Biological Sciences, University of South Carolina, Columbia, SC 29205, USA.

出版信息

Mol Phylogenet Evol. 2012 Jun;63(3):617-24. doi: 10.1016/j.ympev.2012.02.003. Epub 2012 Feb 21.

Abstract

The pattern of amino acid residue replacement in the components of the bursicon signaling system (involving the BURSα/BURSβ heterodimer and its receptor BURSrec) was reconstructed across a phylogeny of 17 insect species, in order to test for the co-occurrence of replacements at sets of individual sites. Sets of three or more branches with perfectly concordant changes occurred to a greater extent than expected by chance, given the observed level of amino acid change. The latter sites (SPC sites) were found to have distinctive characteristics: (1) the mean number of changes was significantly lower at SPC sites than that at other sites with multiple changes; (2) SPC sites had a significantly greater tendency toward parallel amino acid changes than other sites with multiple changes, but no greater tendency toward convergent changes; and (3) parallel changes tended to involve relatively similar amino acids, as indicated by relatively low mean chemical distances. The results implicated functional constraint, permitting only a limited subset of amino acids in a given site, as a major factor in causing both parallel amino acid replacement and coordinated amino acid changes in different sites of the same protein and of interacting proteins in this system.

摘要

在 17 种昆虫物种的系统发育中,重建了保幼激素信号系统(涉及 BURSα/BURSβ 异二聚体及其受体 BURSrec)的氨基酸残基替代模式,以检验在个别位点集上的替代是否同时发生。与观察到的氨基酸变化水平相比,具有完全一致变化的三个或更多分支的集合比预期更频繁地发生。这些位点(SPC 位点)具有独特的特征:(1)SPC 位点的平均变化数明显低于具有多个变化的其他位点;(2)SPC 位点的平行氨基酸变化趋势明显大于具有多个变化的其他位点,但没有更大的趋同变化趋势;(3)平行变化往往涉及相对相似的氨基酸,这表明平均化学距离相对较低。研究结果表明,功能约束(允许给定位置的氨基酸数量有限)是导致同一蛋白质不同位置和相互作用蛋白质中平行氨基酸替代和协调氨基酸变化的主要因素。

相似文献

1
Amino acid sequence coevolution in the insect bursicon ligand-receptor system.
Mol Phylogenet Evol. 2012 Jun;63(3):617-24. doi: 10.1016/j.ympev.2012.02.003. Epub 2012 Feb 21.
2
Glycoprotein hormones and their receptors emerged at the origin of metazoans.
Genome Biol Evol. 2014 Jun 5;6(6):1466-79. doi: 10.1093/gbe/evu118.
3
Bursicon, the tanning hormone of insects: recent advances following the discovery of its molecular identity.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2008 Dec;194(12):989-1005. doi: 10.1007/s00359-008-0386-3. Epub 2008 Nov 13.
4
Drosophila molting neurohormone bursicon is a heterodimer and the natural agonist of the orphan receptor DLGR2.
FEBS Lett. 2005 Apr 11;579(10):2171-6. doi: 10.1016/j.febslet.2005.03.006.
6
Membrane tethered bursicon constructs as heterodimeric modulators of the Drosophila G protein-coupled receptor rickets.
Mol Pharmacol. 2013 Apr;83(4):814-21. doi: 10.1124/mol.112.081570. Epub 2013 Jan 22.
7
Evolutionary conservation of bursicon in the animal kingdom.
Gen Comp Endocrinol. 2007 Aug-Sep;153(1-3):59-63. doi: 10.1016/j.ygcen.2006.12.004. Epub 2006 Dec 27.
8
Identification of a novel bursicon-regulated transcriptional regulator, md13379, in the house fly Musca domestica.
Arch Insect Biochem Physiol. 2009 Feb;70(2):106-21. doi: 10.1002/arch.20283.
9
Evolutionary conservation of amino acid composition in paralogous insect vitellogenins.
Gene. 2010 Nov 1;467(1-2):35-40. doi: 10.1016/j.gene.2010.07.007. Epub 2010 Jul 23.
10
The evolution of hexamerins and the phylogeny of insects.
J Mol Evol. 1998 Jul;47(1):93-108. doi: 10.1007/pl00006366.

引用本文的文献

1
Positive selection on human gamete-recognition genes.
PeerJ. 2018 Jan 11;6:e4259. doi: 10.7717/peerj.4259. eCollection 2018.
2
Coevolution of axon guidance molecule Slit and its receptor Robo.
PLoS One. 2014 May 6;9(5):e94970. doi: 10.1371/journal.pone.0094970. eCollection 2014.

本文引用的文献

2
The essential role of bursicon during Drosophila development.
BMC Dev Biol. 2010 Aug 31;10:92. doi: 10.1186/1471-213X-10-92.
3
Parallel evolution in the major haemoglobin genes of eight species of Andean waterfowl.
Mol Ecol. 2009 Oct;18(19):3992-4005. doi: 10.1111/j.1365-294X.2009.04352.x. Epub 2009 Sep 15.
4
Single-copy nuclear genes resolve the phylogeny of the holometabolous insects.
BMC Biol. 2009 Jun 24;7:34. doi: 10.1186/1741-7007-7-34.
5
Evidence for an ancient adaptive episode of convergent molecular evolution.
Proc Natl Acad Sci U S A. 2009 Jun 2;106(22):8986-91. doi: 10.1073/pnas.0900233106. Epub 2009 Apr 28.
6
Why should we care about molecular coevolution?
Evol Bioinform Online. 2008 Feb 14;4:29-38.
7
8
Bursicon, the tanning hormone of insects: recent advances following the discovery of its molecular identity.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2008 Dec;194(12):989-1005. doi: 10.1007/s00359-008-0386-3. Epub 2008 Nov 13.
9
Parallel genetic evolution within and between bacteriophage species of varying degrees of divergence.
Genetics. 2009 Jan;181(1):225-34. doi: 10.1534/genetics.107.085225. Epub 2008 Nov 10.
10
Frequent and widespread parallel evolution of protein sequences.
Mol Biol Evol. 2008 Sep;25(9):1943-53. doi: 10.1093/molbev/msn143. Epub 2008 Jun 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验