Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany.
Cell Biochem Biophys. 2012 Jun;63(2):151-8. doi: 10.1007/s12013-012-9352-3.
Current advances in structural biology provide valuable insights into structure-function relationship of membrane transporters by solving crystal structures of bacterial homologs of human transporters. Therefore, scientists consider bacterial transporters as useful structural models for designing of drugs targeted in human diseases. The functional homology between Vibrio parahaemolyticus Na(+)/galactose transporter (vSGLT) and Na(+)/glucose cotransporter SGLT1 has been well established a decade ago. Now the crystal structure of vSGLT is considered quite valuable in explaining not only the cotransport mechanisms, but it also acts as a representative protein in understanding the protein stability and amino acid interactions within the core structure. We investigated the molecular mechanisms of genetic variations in SGLT1 that cause glucose-galactose malabsorption (GGM) defects using the crystal structure of vSGLT as a model sugar transporter. Our in silico mutagenesis and modeling analysis suggest that the GGM genetic variations lead to conformational changes either by structure destabilization or by formation of unnecessary interaction within the core structure of SGLT1 thereby explaining the genetic defects in Na(+) dependent sugar translocation across the cell membrane.
当前结构生物学的进展通过解析人类转运蛋白的细菌同源物的晶体结构,为膜转运蛋白的结构-功能关系提供了有价值的见解。因此,科学家们认为细菌转运蛋白是设计针对人类疾病的靶向药物的有用结构模型。十多年前,就已经证实副溶血性弧菌 Na(+)/半乳糖转运蛋白(vSGLT)和 Na(+)/葡萄糖共转运蛋白 SGLT1 之间具有功能同源性。现在,vSGLT 的晶体结构不仅在解释共转运机制方面被认为非常有价值,而且还可以作为理解核心结构内蛋白质稳定性和氨基酸相互作用的代表性蛋白质。我们使用 vSGLT 的晶体结构作为模型糖转运蛋白,研究了导致葡萄糖-半乳糖吸收不良(GGM)缺陷的 SGLT1 遗传变异的分子机制。我们的计算机诱变和建模分析表明,GGM 遗传变异导致构象变化,要么是通过结构不稳定化,要么是通过在 SGLT1 的核心结构内形成不必要的相互作用,从而解释了 Na(+) 依赖的糖跨细胞膜转运的遗传缺陷。