Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
Science. 2012 Mar 2;335(6072):1110-4. doi: 10.1126/science.1214641.
The sulfonamide antibiotics inhibit dihydropteroate synthase (DHPS), a key enzyme in the folate pathway of bacteria and primitive eukaryotes. However, resistance mutations have severely compromised the usefulness of these drugs. We report structural, computational, and mutagenesis studies on the catalytic and resistance mechanisms of DHPS. By performing the enzyme-catalyzed reaction in crystalline DHPS, we have structurally characterized key intermediates along the reaction pathway. Results support an S(N)1 reaction mechanism via formation of a novel cationic pterin intermediate. We also show that two conserved loops generate a substructure during catalysis that creates a specific binding pocket for p-aminobenzoic acid, one of the two DHPS substrates. This substructure, together with the pterin-binding pocket, explains the roles of the conserved active-site residues and reveals how sulfonamide resistance arises.
磺胺类抗生素抑制二氢叶酸合成酶(DHPS),这是细菌和原始真核生物叶酸途径中的关键酶。然而,耐药突变严重削弱了这些药物的作用。我们报告了 DHPS 的催化和耐药机制的结构、计算和突变研究。通过在结晶 DHPS 中进行酶催化反应,我们对反应途径中的关键中间体进行了结构表征。结果支持通过形成新型阳离子蝶呤中间体的 S(N)1 反应机制。我们还表明,两个保守环在催化过程中生成一个亚结构,为 DHPS 的两个底物之一对氨基苯甲酸创造了一个特定的结合口袋。这个亚结构,连同蝶呤结合口袋,解释了保守的活性位点残基的作用,并揭示了磺胺类药物耐药性是如何产生的。