Suppr超能文献

无需采样即可计算蛋白质刚性的集合平均描述。

Calculating ensemble averaged descriptions of protein rigidity without sampling.

机构信息

Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America.

出版信息

PLoS One. 2012;7(2):e29176. doi: 10.1371/journal.pone.0029176. Epub 2012 Feb 22.

Abstract

Previous works have demonstrated that protein rigidity is related to thermodynamic stability, especially under conditions that favor formation of native structure. Mechanical network rigidity properties of a single conformation are efficiently calculated using the integer body-bar Pebble Game (PG) algorithm. However, thermodynamic properties require averaging over many samples from the ensemble of accessible conformations to accurately account for fluctuations in network topology. We have developed a mean field Virtual Pebble Game (VPG) that represents the ensemble of networks by a single effective network. That is, all possible number of distance constraints (or bars) that can form between a pair of rigid bodies is replaced by the average number. The resulting effective network is viewed as having weighted edges, where the weight of an edge quantifies its capacity to absorb degrees of freedom. The VPG is interpreted as a flow problem on this effective network, which eliminates the need to sample. Across a nonredundant dataset of 272 protein structures, we apply the VPG to proteins for the first time. Our results show numerically and visually that the rigidity characterizations of the VPG accurately reflect the ensemble averaged [Formula: see text] properties. This result positions the VPG as an efficient alternative to understand the mechanical role that chemical interactions play in maintaining protein stability.

摘要

先前的研究已经表明,蛋白质刚性与热力学稳定性有关,特别是在有利于形成天然结构的条件下。使用整数体棒卵石游戏(PG)算法可以有效地计算单个构象的机械网络刚性特性。然而,热力学性质需要对可访问构象的集合中的多个样本进行平均,以准确地考虑网络拓扑结构的波动。我们已经开发了一种平均场虚拟卵石游戏(VPG),该方法通过单个有效网络来表示网络的集合。也就是说,在两个刚体之间可以形成的所有可能数量的距离约束(或棒)都被平均数量所取代。得到的有效网络被视为具有加权边,其中边的权重量化了它吸收自由度的能力。VPG 被解释为这个有效网络上的流问题,从而无需进行抽样。在 272 个蛋白质结构的非冗余数据集上,我们首次将 VPG 应用于蛋白质。我们的结果从数值和可视化上表明,VPG 的刚性特征准确地反映了集合平均的 [Formula: see text] 性质。这一结果使得 VPG 成为一种有效的替代方法,可以了解化学相互作用在维持蛋白质稳定性方面所起的机械作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d732/3285152/01e4cd92285c/pone.0029176.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验