CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, CIMAR Associate Laboratory, University of Porto, Porto, Portugal.
PLoS One. 2012;7(2):e31950. doi: 10.1371/journal.pone.0031950. Epub 2012 Feb 22.
Long-chain polyunsaturated fatty acids (LC-PUFAs) such as arachidonic (ARA), eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids are essential components of biomembranes, particularly in neural tissues. Endogenous synthesis of ARA, EPA and DHA occurs from precursor dietary essential fatty acids such as linoleic and α-linolenic acid through elongation and Δ5 and Δ6 desaturations. With respect to desaturation activities some noteworthy differences have been noted in vertebrate classes. In mammals, the Δ5 activity is allocated to the Fads1 gene, while Fads2 is a Δ6 desaturase. In contrast, teleosts show distinct combinations of desaturase activities (e.g. bifunctional or separate Δ5 and Δ6 desaturases) apparently allocated to Fads2-type genes. To determine the timing of Fads1-Δ5 and Fads2-Δ6 evolution in vertebrates we used a combination of comparative and functional genomics with the analysis of key phylogenetic species. Our data show that Fads1 and Fads2 genes with Δ5 and Δ6 activities respectively, evolved before gnathostome radiation, since the catshark Scyliorhinus canicula has functional orthologues of both gene families. Consequently, the loss of Fads1 in teleosts is a secondary episode, while the existence of Δ5 activities in the same group most likely occurred through independent mutations into Fads2 type genes. Unexpectedly, we also establish that events of Fads1 gene expansion have taken place in birds and reptiles. Finally, a fourth Fads gene (Fads4) was found with an exclusive occurrence in mammalian genomes. Our findings enlighten the history of a crucially important gene family in vertebrate fatty acid metabolism and physiology and provide an explanation of how observed lineage-specific gene duplications, losses and diversifications might be linked to habitat-specific food web structures in different environments and over geological timescales.
长链多不饱和脂肪酸(LC-PUFAs),如花生四烯酸(ARA)、二十碳五烯酸(EPA)和二十二碳六烯酸(DHA),是生物膜的重要组成部分,特别是在神经组织中。ARA、EPA 和 DHA 的内源性合成是从亚油酸和α-亚麻酸等膳食必需脂肪酸通过延长和 Δ5 和 Δ6 去饱和作用产生的。就去饱和活性而言,在脊椎动物类群中已经注意到一些值得注意的差异。在哺乳动物中,Δ5 活性分配给 Fads1 基因,而 Fads2 是一种 Δ6 去饱和酶。相比之下,硬骨鱼类显示出不同的去饱和酶活性组合(例如双功能或单独的 Δ5 和 Δ6 去饱和酶),显然分配给 Fads2 型基因。为了确定 Fads1-Δ5 和 Fads2-Δ6 在脊椎动物中的进化时间,我们使用了比较和功能基因组学的组合,并对关键的系统发育物种进行了分析。我们的数据表明,具有 Δ5 和 Δ6 活性的 Fads1 和 Fads2 基因在颌骨辐射之前就已经进化了,因为猫鲨 Scyliorhinus canicula 具有这两个基因家族的功能同源物。因此,硬骨鱼类中 Fads1 的丢失是一个次要事件,而同一组中存在 Δ5 活性很可能是通过独立的突变进入 Fads2 型基因而发生的。出乎意料的是,我们还确定了 Fads1 基因扩增事件发生在鸟类和爬行动物中。最后,我们发现了第四个 Fads 基因(Fads4),它只存在于哺乳动物基因组中。我们的研究结果揭示了脊椎动物脂肪酸代谢和生理学中一个至关重要的基因家族的历史,并解释了为什么观察到的谱系特异性基因复制、丢失和多样化可能与不同环境和地质时间尺度上特定于栖息地的食物网结构有关。