Otto York Department of Chemical, Biological and Pharmaceutical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, USA.
J Pharm Sci. 2012 Jun;101(6):2204-12. doi: 10.1002/jps.23075. Epub 2012 Mar 6.
The objective of this study is to understand the underlying mechanisms responsible for the superior stability of indomethacin (INM)-Eudragit® E PO (E PO) system by exploring the miscibility and intermolecular interactions through the combination of thermal, rheological, and spectroscopic analysis. The zero shear-rate viscosity drops monotonically with the increase of INM concentration at 145 °C, suggesting that E PO and INM form a solution and the small molecular drug acts as a plasticizer. Flow activation energy was calculated from the viscosity data at different temperature. The glass transition temperature (T(g)) of the mixture at different composition was determined using differential scanning calorimetry. The T(g) and flow activation energy peak at the INM concentration around 60%-70%. Fourier transform infrared analysis provided direct evidence for the intermolecular ionic interactions, which may disrupt the dimer formation of amorphous INM. The study explained the superior stability of INM-E PO mixtures, and demonstrated that a combination of thermal, rheological, and spectroscopic technologies can help us to obtain a full picture of the drug-polymer interactions and to determine the formulation and processing conditions.
本研究的目的是通过热、流变和光谱分析相结合,探讨混合物的混溶性和分子间相互作用,从而了解吲哚美辛(INM)-Eudragit® E PO(E PO)系统稳定性优异的潜在机制。在 145°C 时,零剪切速率粘度随 INM 浓度的增加而单调下降,表明 E PO 和 INM 形成溶液,小分子药物充当增塑剂。从不同温度下的粘度数据计算流动活化能。使用差示扫描量热法确定不同组成混合物的玻璃化转变温度(T(g))。在 INM 浓度约为 60%-70%的位置出现 T(g)和流动活化能峰值。傅里叶变换红外分析为分子间离子相互作用提供了直接证据,这可能破坏无定形 INM 的二聚体形成。该研究解释了 INM-E PO 混合物的优异稳定性,并表明热、流变和光谱技术的组合可帮助我们全面了解药物-聚合物相互作用,并确定配方和加工条件。