Suppr超能文献

竞争性学习的动态:更新与记忆的作用。

Dynamics of competitive learning: the role of updates and memory.

作者信息

Bhat Ajaz Ahmad, Mehta Anita

机构信息

Theoretical Science Department, Satyendra Nath Bose National Centre, Block JD Sector 3, Salt Lake, Kolkata 700098, India.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jan;85(1 Pt 1):011134. doi: 10.1103/PhysRevE.85.011134. Epub 2012 Jan 19.

Abstract

We examine the effects of memory and different updating paradigms in a game-theoretic model of competitive learning, where agents are influenced in their choice of strategy by both the choices made by, and the consequent success rates of, their immediate neighbors. We apply parallel and sequential updates in all possible combinations to the two competing rules and find, typically, that the phase diagram of the model consists of a disordered phase separating two ordered phases at coexistence. A major result is that the corresponding critical exponents belong to the generalized universality class of the voter model. When the two strategies are distinct but not too different, we find the expected linear-response behavior as a function of their difference. Finally, we look at the extreme situation when a superior strategy, accompanied by a short memory of earlier outcomes, is pitted against its inverse; interestingly, we find that a long memory of earlier outcomes can occasionally compensate for the choice of a globally inferior strategy.

摘要

我们在一个竞争学习的博弈论模型中研究记忆和不同更新范式的影响,在该模型中,主体在策略选择上会受到其直接邻域的选择及其后续成功率的影响。我们将并行和顺序更新以所有可能的组合应用于两个竞争规则,并且通常发现,该模型的相图由一个无序相组成,该无序相在共存时将两个有序相分隔开。一个主要结果是,相应的临界指数属于选民模型的广义普适类。当两种策略不同但差异不大时,我们发现了作为它们差异函数的预期线性响应行为。最后,我们考察一种极端情况,即一种优越策略(伴随着对早期结果的短暂记忆)与它的相反策略相抗衡;有趣的是,我们发现对早期结果的长期记忆偶尔可以弥补全局劣势策略的选择。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验