Key Laboratory of Macromolecule Synthesis and Functionalization, Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hanghzou, China.
ACS Appl Mater Interfaces. 2012 Apr;4(4):1981-9. doi: 10.1021/am201804p. Epub 2012 Mar 27.
The successful growth of carbon nanotubes (CNTs) on montmorillonite (MMT) precursors treated with different concentrations of ferric nitrate at 50 °C (MMT(Fe)-50) and 100 °C (MMT(Fe)-100) was achieved via the in situ chemical vapor deposition (CVD) of acetylene. The as-obtained MMT-CNTs composites were characterized using X-ray diffraction, inductively coupled plasma emission spectrometry, scanning electron microscopy, and transmission electron microscopy. All Fe(3+) ions were intercalated into the MMT interlayers at either 50 or 100 °C in the case of [Fe(3+)]/[clay] = 1. However, the iron content in MMT(Fe)-100 increased rapidly with the amount of ferric nitrate added, whereas the iron content in MMT(Fe)-50 did not exhibit significant changes. On the other hand, the physical and chemical adsorption of Fe(3+) onto the MMT surface was believed to be responsible for the great diversity of iron contents in MMT(Fe)-50 and MMT(Fe)-100 at the same [Fe(3+)]/[clay] ratios. Moreover, the CNT yield showed variation similar to the iron content because the CNTs yield depends primarily on the amount of catalyst available. The CNTs embedded onto MMT(Fe)-100 exhibited narrower diameter distributions than those on the MMT(Fe)-50 precursors, with more CNTs with diameters less than 50 nm on the former. It is suggested that a porous structure with many pores formed by iron species and MMT laminas is related to the morphology and structure of CNTs embedded on the surface of MMT.
成功地在不同浓度的硝酸铁处理的蒙脱土(MMT)前体上生长碳纳米管(CNTs),温度分别为 50°C(MMT(Fe)-50)和 100°C(MMT(Fe)-100),通过乙炔的原位化学气相沉积(CVD)实现。通过 X 射线衍射、电感耦合等离子体发射光谱、扫描电子显微镜和透射电子显微镜对所获得的 MMT-CNTs 复合材料进行了表征。在[Fe(3+)]/[粘土] = 1 的情况下,所有的 Fe(3+)离子都在 50 或 100°C 时嵌入到 MMT 层间。然而,在 MMT(Fe)-100 中,铁含量随硝酸铁用量的增加而迅速增加,而 MMT(Fe)-50 中的铁含量没有明显变化。另一方面,Fe(3+)在 MMT 表面的物理和化学吸附被认为是造成 MMT(Fe)-50 和 MMT(Fe)-100 在相同[Fe(3+)]/[粘土]比例下铁含量差异很大的原因。此外,CNTs 的产率与铁含量相似,因为 CNTs 的产率主要取决于催化剂的含量。嵌入到 MMT(Fe)-100 上的 CNTs 的直径分布比嵌入到 MMT(Fe)-50 前体上的更窄,前者的直径小于 50nm 的 CNTs 更多。这表明由铁物种和 MMT 层形成的多孔结构与嵌入在 MMT 表面的 CNTs 的形态和结构有关。