IEEE Trans Image Process. 2012 Jul;21(7):3323-8. doi: 10.1109/TIP.2012.2190612. Epub 2012 Mar 12.
In this correspondence, we address the task of recovering shape-from-focus (SFF) as a perceptual organization problem in 3-D. Using tensor voting, depth hypotheses from different focus operators are validated based on their likelihood to be part of a coherent 3-D surface, thereby exploiting scene geometry and focus information to generate reliable depth estimates. The proposed method is fast and yields significantly better results compared with existing SFF methods.
在这封通信中,我们将聚焦深度恢复(SFF)问题作为一个三维的感知组织问题来解决。我们使用张量投票,根据不同的聚焦算子产生的深度假设成为一个连贯的三维表面的可能性来验证这些假设,从而利用场景几何和聚焦信息生成可靠的深度估计。与现有的 SFF 方法相比,所提出的方法速度快,效果显著更好。