Department of Biochemistry and Biophysics, Arrhenius Laboratories of Natural Sciences, Stockholm University, Stockholm, Sweden.
J Phys Chem B. 2012 Apr 19;116(15):4448-56. doi: 10.1021/jp300329k. Epub 2012 Apr 6.
The amide I spectrum of multimers of helical protein segments was simulated using transition dipole coupling (TDC) for long-range interactions between individual amide oscillators and DFT data from dipeptides (la Cour Jansen et al. J. Chem. Phys.2006, 125, 44312) for nearest neighbor interactions. Vibrational coupling between amide groups on different helices shift the helix absorption to higher wavenumbers. This effect is small for helix dimers (1 cm(-1)) at 10 Å distance and only moderately affected by changes in the relative orientation between the helices. However, the effect becomes considerable when several helices are bundled in membrane proteins. Particular examples are the 7-helix membrane proteins bacteriorhodopsin (BR) and rhodopsin, where the upshift is 4.3 and 5.3 cm(-1), respectively, due to interhelical coupling within a BR monomer. A further upshift of 4.0 cm(-1) occurs when BR monomers associate to trimers. We propose that interhelical vibrational coupling explains the experimentally observed unusually high wavenumber of the amide I band of BR.
使用跃迁偶极耦合 (TDC) 模拟螺旋蛋白片段多聚体的酰胺 I 谱,用于长程相互作用的单个酰胺振荡器和二肽的 DFT 数据 (la Cour Jansen 等人,J. Chem. Phys.2006, 125, 44312) 用于最近邻相互作用。不同螺旋体上酰胺基团之间的振动耦合将螺旋体吸收移至更高的波数。对于 10 Å 距离的螺旋二聚体 (1 cm(-1)),这种效应很小,并且仅适度受螺旋体之间相对取向变化的影响。然而,当几个螺旋体在膜蛋白中捆绑时,这种效应变得相当显著。特别的例子是 7 螺旋膜蛋白细菌视紫红质 (BR) 和视紫红质,由于 BR 单体内部的螺旋间耦合,它们的上移分别为 4.3 和 5.3 cm(-1)。当 BR 单体缔合成三聚体时,进一步上移 4.0 cm(-1)。我们提出,螺旋间振动耦合解释了实验观察到的 BR 酰胺 I 带异常高的波数。