School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.
Phys Chem Chem Phys. 2012 May 7;14(17):5966-72. doi: 10.1039/c2cp23235a. Epub 2012 Mar 27.
An amorphous MnO(2)·nH(2)O/microporous carbon spheres (α-MnO(2)·nH(2)O/MCS) composite electrode material is prepared by a chemical co-precipitation method. It is observed that the amorphous MnO(2) particles are deposited on the surface of the MCS, which form a network with a uniquely developed three-dimensional open porous system containing macropores, mesopores and micropores. The electrochemical measurements reveal that the composite electrode material presents a much more stable and reversible capacitance behavior compared to the pure α-MnO(2)·nH(2)O in 1 M of Na(2)SO(4) electrolyte. The composite containing 25 wt% MCS exhibits optimal specific capacitance of 218.2 F g(-1) at 2 mV s(-1), and is still as high as 112.4 F g(-1) at 100 mV s(-1), while a drastic reduction from 197.0 F g(-1) at 2 mV s(-1) to only 40.7 F g(-1) at 100 mV s(-1) occurs for the pure α-MnO(2)·nH(2)O. The composite also shows a rather high electrode-specific capacitance of 3.13 F cm(-2) and a long cycle life. The remarkable enhancement in the electrochemical performance is mainly attributed to the microporous structure of the MCS contributing to the deposition of MnO(2) particles on the surface of the MCS, and the uniquely developed porous network of the composite facilitating the rapid transport of the electrolyte. These factors result in the high electrochemical utilization of MnO(2), a great reduction of the equivalent series resistance, and hence the relatively high and stable electrochemical behavior.
一种无定形 MnO(2)·nH(2)O/微孔碳球 (α-MnO(2)·nH(2)O/MCS) 复合电极材料是通过化学共沉淀法制备的。观察到无定形 MnO(2) 颗粒沉积在 MCS 的表面上,形成具有独特三维开放多孔系统的网络,其中包含大孔、介孔和微孔。电化学测量表明,与在 1 M 的 Na(2)SO(4)电解质中纯 α-MnO(2)·nH(2)O 相比,复合电极材料表现出更稳定和可逆的电容行为。在含有 25wt%MCS 的复合材料中,在 2 mV s(-1)下的比电容达到 218.2 F g(-1),在 100 mV s(-1)下仍高达 112.4 F g(-1),而纯 α-MnO(2)·nH(2)O 的电容则从 2 mV s(-1)时的 197.0 F g(-1)急剧下降到 100 mV s(-1)时的 40.7 F g(-1)。该复合材料还表现出相当高的电极比电容 3.13 F cm(-2)和长循环寿命。电化学性能的显著提高主要归因于 MCS 的微孔结构有助于 MnO(2)颗粒在 MCS 表面上的沉积,以及复合材料独特的多孔网络有利于电解质的快速传输。这些因素导致 MnO(2)的电化学利用率高,等效串联电阻大大降低,因此具有较高且稳定的电化学行为。