Fundamental and Computational Sciences Directorate, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA.
ISME J. 2012 Sep;6(9):1653-64. doi: 10.1038/ismej.2012.22. Epub 2012 Mar 29.
A major goal of microbial community ecology is to understand the forces that structure community composition. Deterministic selection by specific environmental factors is sometimes important, but in other cases stochastic or ecologically neutral processes dominate. Lacking is a unified conceptual framework aiming to understand why deterministic processes dominate in some contexts but not others. Here we work toward such a framework. By testing predictions derived from general ecological theory we aim to uncover factors that govern the relative influences of deterministic and stochastic processes. We couple spatiotemporal data on subsurface microbial communities and environmental parameters with metrics and null models of within and between community phylogenetic composition. Testing for phylogenetic signal in organismal niches showed that more closely related taxa have more similar habitat associations. Community phylogenetic analyses further showed that ecologically similar taxa coexist to a greater degree than expected by chance. Environmental filtering thus deterministically governs subsurface microbial community composition. More importantly, the influence of deterministic environmental filtering relative to stochastic factors was maximized at both ends of an environmental variation gradient. A stronger role of stochastic factors was, however, supported through analyses of phylogenetic temporal turnover. Although phylogenetic turnover was on average faster than expected, most pairwise comparisons were not themselves significantly non-random. The relative influence of deterministic environmental filtering over community dynamics was elevated, however, in the most temporally and spatially variable environments. Our results point to general rules governing the relative influences of stochastic and deterministic processes across micro- and macro-organisms.
微生物群落生态学的一个主要目标是理解构成群落组成的力量。特定环境因素的确定性选择有时很重要,但在其他情况下,随机或生态中性过程占主导地位。缺乏一个统一的概念框架来理解为什么确定性过程在某些情况下占主导地位,而在其他情况下则不然。在这里,我们致力于建立这样一个框架。通过测试从一般生态学理论中得出的预测,我们旨在揭示控制确定性和随机性过程相对影响的因素。我们将地下微生物群落和环境参数的时空数据与群落内和群落间系统发育组成的度量和空模型相结合。在生物生态位中测试系统发育信号表明,亲缘关系越近的分类群具有越相似的栖息地关联。群落系统发育分析进一步表明,生态相似的分类群比随机共存的程度更高。因此,环境过滤确定性地控制着地下微生物群落的组成。更重要的是,在环境变化梯度的两端,确定性环境过滤相对于随机因素的影响最大。然而,通过对系统发育时间周转率的分析,支持了随机因素的更强作用。尽管系统发育周转率平均快于预期,但大多数成对比较本身并不具有显著的非随机性。然而,在最具时间和空间变异性的环境中,确定性环境过滤对群落动态的相对影响得到了提高。我们的结果指出了在微观和宏观生物中,随机和确定性过程的相对影响的一般规律。
Proc Natl Acad Sci U S A. 2015-3-17
Mar Life Sci Technol. 2025-7-17
Microorganisms. 2025-8-19
Appl Environ Microbiol. 2025-8-20
PLoS One. 2011-8-31
ISME J. 2011-8-18
Philos Trans R Soc Lond B Biol Sci. 2011-8-27
Philos Trans R Soc Lond B Biol Sci. 2011-8-27
FEMS Microbiol Rev. 2011-7-29