Laboratory of Engineering Nanobiotechnology, Department of Engineering Geoecology, University of Mining and Geology "St. Ivan Rilski," Stoyan Edrev Str., Sofia 1700, Bulgaria.
Microsc Res Tech. 2012 Sep;75(9):1159-64. doi: 10.1002/jemt.22043. Epub 2012 Mar 28.
In this study, we aimed to increase the sensitivity of protein labeling using 1.4 nm gold nanoparticles and glutamate δ2 receptor (GluD2) from the postsynaptic membrane of the Purkinje cells. The very small marker size of the particles reduces the steric hindrance between antibodies leading to a higher labeling efficiency of more than one subunit per single receptor molecule. The nanoparticles are visible in 200 kV dark-field scanning transmission electron microscope on freeze-fractured carbon replica of nervous tissue after plasma cleaning treatment. The different elemental composition of nanoparticles as Au nanogold or CdS quantum dot can be distinguished by energy dispersive X-ray spectroscopy. This method ensures detection of an average of three subunits per GluD2 and often labels all four of them with 1.4 nm Au nanoparticles. It is concluded that this high-resolution microscopic method is useful for exploring the quaternary structure of membrane proteins.
在这项研究中,我们旨在通过使用 1.4nm 金纳米粒子和来自浦肯野细胞突触后膜的谷氨酸 δ2 受体 (GluD2) 来提高蛋白质标记的灵敏度。颗粒的非常小的标记尺寸减少了抗体之间的空间位阻,从而导致每个受体分子的标记效率超过一个亚基。经过等离子体清洗处理后,在冷冻断裂碳复制品的神经组织的 200kV 暗场扫描透射电子显微镜下,可以观察到纳米粒子。通过能量色散 X 射线光谱可以区分纳米粒子的不同元素组成,如 Au 纳米金或 CdS 量子点。该方法可确保平均每个 GluD2 检测到三个亚基,并且通常用 1.4nm Au 纳米粒子标记所有四个亚基。结论是,这种高分辨率显微镜方法对于探索膜蛋白的四级结构很有用。