Department of Physics, La Trobe University, Victoria 3086, Australia.
J Chem Phys. 2012 Mar 28;136(12):124701. doi: 10.1063/1.3695643.
Surface sensitive C1s core level photoelectron spectroscopy was used to examine the electronic properties of C(60)F(48) molecules on the C(100):H surface. An upward band bending of 0.74 eV in response to surface transfer doping by fluorofullerene molecules is measured. Two distinct molecular charge states of C(60)F(48) are identified and their relative concentration determined as a function of coverage. One corresponds to ionized molecules that participate in surface charge transfer and the other to neutral molecules that do not. The position of the lowest unoccupied molecular orbital of neutral C(60)F(48) which is the relevant acceptor level for transfer doping lies initially 0.6 eV below the valence band maximum and shifts upwards in the course of transfer doping by up to 0.43 eV due to a doping induced surface dipole. This upward shift in conjunction with the band bending determines the occupation of the acceptor level and limits the ultimately achievable hole concentration with C(60)F(48) as a surface acceptor to values close to 10(13) cm(-2) as reported in the literature.
采用表面敏感的 C1s 芯层光电子能谱研究了 C(100):H 表面上 C(60)F(48)分子的电子性质。测量到 C(60)F(48)分子表面转移掺杂导致的能带向上弯曲为 0.74eV。确定了 C(60)F(48)的两种不同的分子电荷态,并确定了它们的相对浓度随覆盖率的变化。一种对应于参与表面电荷转移的离子化分子,另一种对应于不参与的中性分子。中性 C(60)F(48)的最低未占据分子轨道的位置(即转移掺杂的相关受主能级)最初位于价带最大值以下 0.6eV,在转移掺杂过程中由于掺杂诱导的表面偶极向上移动可达 0.43eV。这种向上的移动与能带弯曲一起决定了受主能级的占据,并限制了 C(60)F(48)作为表面受主所能达到的最终空穴浓度,正如文献中报道的接近 10(13)cm(-2)。