Biomedical Imaging Technologies, DIE, ETSI Telecomunicación, Universidad Politécnica de Madrid, Avenida Complutense No. 30, Madrid, Spain.
Med Image Anal. 2012 Jul;16(5):1015-28. doi: 10.1016/j.media.2012.02.004. Epub 2012 Feb 23.
Images acquired during free breathing using first-pass gadolinium-enhanced myocardial perfusion magnetic resonance imaging (MRI) exhibit a quasiperiodic motion pattern that needs to be compensated for if a further automatic analysis of the perfusion is to be executed. In this work, we present a method to compensate this movement by combining independent component analysis (ICA) and image registration: First, we use ICA and a time-frequency analysis to identify the motion and separate it from the intensity change induced by the contrast agent. Then, synthetic reference images are created by recombining all the independent components but the one related to the motion. Therefore, the resulting image series does not exhibit motion and its images have intensities similar to those of their original counterparts. Motion compensation is then achieved by using a multi-pass image registration procedure. We tested our method on 39 image series acquired from 13 patients, covering the basal, mid and apical areas of the left heart ventricle and consisting of 58 perfusion images each. We validated our method by comparing manually tracked intensity profiles of the myocardial sections to automatically generated ones before and after registration of 13 patient data sets (39 distinct slices). We compared linear, non-linear, and combined ICA based registration approaches and previously published motion compensation schemes. Considering run-time and accuracy, a two-step ICA based motion compensation scheme that first optimizes a translation and then for non-linear transformation performed best and achieves registration of the whole series in 32±12s on a recent workstation. The proposed scheme improves the Pearsons correlation coefficient between manually and automatically obtained time-intensity curves from .84±.19 before registration to .96±.06 after registration.
使用首过钆增强心肌灌注磁共振成像(MRI)采集的自由呼吸图像表现出准周期性运动模式,如果要对灌注进行进一步的自动分析,则需要对此进行补偿。在这项工作中,我们提出了一种通过独立成分分析(ICA)和图像配准相结合来补偿这种运动的方法:首先,我们使用 ICA 和时频分析来识别运动,并将其与对比剂引起的强度变化分开。然后,通过重新组合所有独立成分(但与运动相关的成分除外)来创建合成参考图像。因此,所得的图像系列不会显示运动,并且其图像的强度与其原始图像相似。然后通过使用多遍图像配准过程来实现运动补偿。我们在 13 名患者的 39 个图像系列上测试了我们的方法,这些图像系列覆盖了左心室的基底、中部和顶部区域,每个区域包含 58 个灌注图像。我们通过比较手动跟踪的心肌部分的强度轮廓与 13 个数据集(39 个不同切片)配准前后自动生成的强度轮廓来验证我们的方法。我们比较了线性、非线性和组合 ICA 基于的配准方法以及先前发表的运动补偿方案。考虑到运行时间和准确性,基于两步 ICA 的运动补偿方案首先优化平移,然后进行非线性变换,表现最佳,可在最近的工作站上在 32±12s 内完成整个系列的配准。所提出的方案提高了手动和自动获取的时间强度曲线之间的 Pearson 相关系数,从配准前的.84±.19 提高到配准后的.96±.06。