Department of Chemistry, University of Texas at El Paso, El Paso, Texas 79968, USA.
J Am Chem Soc. 2012 May 2;134(17):7480-7. doi: 10.1021/ja3008038. Epub 2012 Apr 23.
The electrosynthetic method has been used for the selective synthesis of fullerene derivatives that are otherwise not accessible by other procedures. Recent attempts to electrosynthesize Sc(3)N@I(h)-C(80) derivatives using the Sc(3)N@I(h)-C(80) dianion were unsuccessful because of its low nucleophilicity. Those results prompted us to prepare the Sc(3)N@C(80) trianion, which should be more nucleophilic and reactive with electrophilic reagents. The reaction between Sc(3)N@C(80) trianions and benzal bromide (PhCHBr(2)) was successful and yielded a methano derivative, Sc(3)N@I(h)-C(80)(CHPh) (1), in which the >CHPh addend is selectively attached to a [6,6] ring junction, as characterized by MALDI-TOF mass spectrometry and NMR and UV-vis-NIR spectroscopy. The electrochemistry of 1 was studied using cyclic voltammetry, which showed that 1 exhibits the typical irreversible cathodic behavior of pristine Sc(3)N@I(h)-C(80), resembling the behavior of other methano adducts of Sc(3)N@I(h)-C(80). The successful synthesis of endohedral metallofullerene derivatives using trianionic Sc(3)N@I(h)-C(80) and dianionic Lu(3)N@I(h)-C(80), but not dianionic Sc(3)N@I(h)-C(80), prompted us to probe the causes using theoretical calculations. The Sc(3)N@I(h)-C(80) trianion has a singly occupied molecular orbital with high spin density localized on the fullerene cage, in contrast to the highest occupied molecular orbital of the Sc(3)N@I(h)-C(80) dianion, which is mainly localized on the inside cluster. The calculations provide a clear explanation for the different reactivities observed for the dianions and trianions of these endohedral fullerenes.
电化学合成方法已被用于选择性合成富勒烯衍生物,而这些衍生物通过其他方法是无法获得的。最近,人们试图用电化学合成 Sc(3)N@I(h)-C(80)衍生物,但由于其亲核性较低,因此使用 Sc(3)N@I(h)-C(80)二负离子的尝试没有成功。这些结果促使我们制备 Sc(3)N@C(80)三负离子,它应该具有更高的亲核性和与亲电试剂的反应性。Sc(3)N@C(80)三负离子与苯甲酰溴(PhCHBr(2))的反应是成功的,生成了一个甲氧基衍生物 Sc(3)N@I(h)-C(80)(CHPh)(1),其中 >CHPh 附加物选择性地连接到[6,6]环结上,这一点通过 MALDI-TOF 质谱、NMR 和 UV-vis-NIR 光谱得到了表征。通过循环伏安法研究了 1 的电化学性质,结果表明 1 表现出原始 Sc(3)N@I(h)-C(80)的典型不可逆阴极行为,类似于其他 Sc(3)N@I(h)-C(80)的甲氧基加合物的行为。使用三负离子 Sc(3)N@I(h)-C(80)和二负离子 Lu(3)N@I(h)-C(80)成功合成了endohedral 金属富勒烯衍生物,但二负离子 Sc(3)N@I(h)-C(80)则没有,这促使我们使用理论计算来探究原因。Sc(3)N@I(h)-C(80)三负离子具有单占据分子轨道,自旋密度高度集中在富勒烯笼上,与 Sc(3)N@I(h)-C(80)二负离子的最高占据分子轨道形成对比,后者主要集中在内部簇上。这些计算为观察到这些内包富勒烯的二负离子和三负离子的不同反应性提供了明确的解释。