Suppr超能文献

三种微藻(埃及分离株)对三种重金属的生物去除能力。

Bioremoval capacity of three heavy metals by some microalgae species (Egyptian Isolates).

机构信息

Botany Department, Faculty of Science, Cairo University, Giza, Egypt.

出版信息

Plant Signal Behav. 2012 Mar;7(3):392-9. doi: 10.4161/psb.19173. Epub 2012 Mar 1.

Abstract

Three fresh water microalgal isolates [Phormidium ambiguum (Cyanobacterium), Pseudochlorococcum typicum and Scenedesmus quadricauda var quadrispina (Chlorophyta)] were tested for tolerance and removal of mercury (Hg²⁺), lead (Pb²⁺) and cadmium (Cd²⁺) in aqueous solutions as a single metal species at conc. 5-100 mg/L under controled laboratory conditions. The obtained results showed that Hg²⁺ was the most toxic of the three metal ions to the test algae even at low concentration (< 20 mg/L). While lower concentration of Pb²⁺ and Cd²⁺ (5-20 mg/L) enhanced the algal growth (chlorophyll a and protein), elevated concentrations (40-100 mg/L) were inhibitory to the growth. The results also revealed that Ph. ambiguum was the most sensitive alga to the three metal ions even at lower concentrations (5 and 10 mg/L) while P. typicum and S. quadricauda were more tolerant to high metal concentrations up to 100 mg/L. The bioremoval of heavy metal ions (Hg²⁺, Pb²⁺ and Cd²⁺) by P. typicum from aqueous solution showed that the highest percentage of metal bioremoval occurred in the first 30 min of contact recording 97% (Hg²⁺), 86% (Cd²⁺) and 70% (Pb²⁺). Transmission electron microscopy (TEM) was used to study the interaction between heavy metal ions and P. typicum cells. At ultrastructural level, an electron dense layers were detected on the algal cell surfaces when exposed to Cd, Hg and Pb. At the same time, dark spherical electron dense bodies were accumulated in the vacuoles of the algal cells exposed to Pb. Excessive accumulation of starch around the pyrenoids were recorded as well as deteriorations of the algal cell organelles exposed to the three metal ions.

摘要

三种淡水微藻分离株[蓝藻门的含糊颤藻(Phormidium ambiguum)、典型伪枝藻(Pseudochlorococcum typicum)和四尾栅藻(Chlorophyta)]在受控实验室条件下,用浓度为 5-100mg/L 的单一金属物种(Hg²⁺、Pb²⁺和 Cd²⁺)在水溶液中进行了耐受性和去除性测试。结果表明,即使在低浓度(<20mg/L)下,Hg²⁺也是三种金属离子中对测试藻类最具毒性的一种。而较低浓度(5-20mg/L)的 Pb²⁺和 Cd²⁺促进了藻类的生长(叶绿素 a 和蛋白质),而较高浓度(40-100mg/L)则对生长有抑制作用。结果还表明,即使在较低浓度(5 和 10mg/L)下,含糊颤藻对三种金属离子最敏感,而典型伪枝藻和四尾栅藻对高达 100mg/L 的高金属浓度更具耐受性。典型伪枝藻从水溶液中去除重金属离子(Hg²⁺、Pb²⁺和 Cd²⁺)的结果表明,在接触的前 30 分钟内,金属的去除率最高,达到 97%(Hg²⁺)、86%(Cd²⁺)和 70%(Pb²⁺)。透射电子显微镜(TEM)用于研究重金属离子与典型伪枝藻细胞的相互作用。在超微结构水平上,当藻类细胞暴露于 Cd、Hg 和 Pb 时,在其细胞表面检测到电子致密层。同时,在暴露于 Pb 的藻类细胞的液泡中积累了暗的球形电子致密体。在暴露于三种金属离子的藻类细胞中,还记录到了淀粉在类囊体周围的过度积累以及藻类细胞细胞器的恶化。

相似文献

1
Bioremoval capacity of three heavy metals by some microalgae species (Egyptian Isolates).
Plant Signal Behav. 2012 Mar;7(3):392-9. doi: 10.4161/psb.19173. Epub 2012 Mar 1.
2
Detoxification of toxic heavy metals by marine bacteria highly resistant to mercury.
Mar Biotechnol (NY). 2008 Jul-Aug;10(4):471-7. doi: 10.1007/s10126-008-9083-z. Epub 2008 Feb 21.
3
Phytoextraction of Pb and Cd by the Mediterranean saltbush (Atriplex halimus L.): metal uptake in relation to salinity.
Environ Sci Pollut Res Int. 2009 Nov;16(7):844-54. doi: 10.1007/s11356-009-0224-3. Epub 2009 Jul 14.
5
Removal of mercury(II), lead(II) and cadmium(II) from aqueous solutions using Rhodobacter sphaeroides SC01.
Chemosphere. 2020 Mar;243:125166. doi: 10.1016/j.chemosphere.2019.125166. Epub 2019 Nov 1.
8
Comparison of the microalgae Phormidium tenue and Chlorella vulgaris as biosorbents of Cd and Zn from aqueous environments.
Environ Res. 2023 Oct 15;235:116675. doi: 10.1016/j.envres.2023.116675. Epub 2023 Jul 14.
9
[Cellular damage of low-dose combined exposure to mercury, lead and cadmium on hippocampal neurons in rats].
Zhonghua Yu Fang Yi Xue Za Zhi. 2018 Oct 6;52(10):976-982. doi: 10.3760/cma.j.issn.0253-9624.2018.10.003.

引用本文的文献

2
Microbial strategies for lead remediation in agricultural soils and wastewater: mechanisms, applications, and future directions.
Front Microbiol. 2024 Sep 11;15:1434921. doi: 10.3389/fmicb.2024.1434921. eCollection 2024.
3
Microbial mediated remediation of heavy metals toxicity: mechanisms and future prospects.
Front Plant Sci. 2024 Jul 19;15:1420408. doi: 10.3389/fpls.2024.1420408. eCollection 2024.
4
Microbial recovery of rare earth elements from various waste sources: a mini review with emphasis on microalgae.
World J Microbiol Biotechnol. 2024 May 4;40(6):189. doi: 10.1007/s11274-024-03974-4.
7
Toxicity, physiological response, and biosorption mechanism of to copper, lead, and cadmium.
Front Microbiol. 2024 Mar 28;15:1374275. doi: 10.3389/fmicb.2024.1374275. eCollection 2024.
9
Biosynthesis of Silver Nanoparticles Produced Using spp. Bacteria.
Nanomaterials (Basel). 2023 Feb 11;13(4):702. doi: 10.3390/nano13040702.
10
Phytochelatins: Sulfur-Containing Metal(loid)-Chelating Ligands in Plants.
Int J Mol Sci. 2023 Jan 26;24(3):2430. doi: 10.3390/ijms24032430.

本文引用的文献

1
An X-ray Microanalytical Study of the Distribution of Cadmium in Roots of Zea mays L.
J Plant Physiol. 1984 Jun;115(1):19-28. doi: 10.1016/S0176-1617(84)80047-4. Epub 2012 Feb 20.
2
The mechanism of cobalt biosorption.
Biotechnol Bioeng. 1989 Feb 20;33(7):823-31. doi: 10.1002/bit.260330705.
3
Accumulation of cobalt by marine alga.
Biotechnol Bioeng. 1989 Feb 20;33(7):809-14. doi: 10.1002/bit.260330703.
4
Novel biofiltration methods for the treatment of heavy metals from industrial wastewater.
J Hazard Mater. 2008 Feb 28;151(1):1-8. doi: 10.1016/j.jhazmat.2007.09.101. Epub 2007 Sep 29.
5
The efficiency of the red alga Mastocarpus stellatus for remediation of cadmium pollution.
Bioresour Technol. 2008 Jul;99(10):4138-46. doi: 10.1016/j.biortech.2007.08.065. Epub 2007 Oct 24.
6
Biosorption of chromium and nickel by heavy metal resistant fungal and bacterial isolates.
J Hazard Mater. 2007 Jul 19;146(1-2):270-7. doi: 10.1016/j.jhazmat.2006.12.017. Epub 2006 Dec 13.
7
Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants.
Biochimie. 2006 Nov;88(11):1707-19. doi: 10.1016/j.biochi.2006.07.003. Epub 2006 Jul 26.
8
Cadmium toxicity to two marine phytoplankton under different nutrient conditions.
Aquat Toxicol. 2006 Jun 15;78(2):114-26. doi: 10.1016/j.aquatox.2006.02.008. Epub 2006 Apr 17.
9
Heavy metal detoxification in eukaryotic microalgae.
Chemosphere. 2006 Jun;64(1):1-10. doi: 10.1016/j.chemosphere.2005.11.024. Epub 2006 Jan 6.
10
Tolerance to cadmium in Chlamydomonas sp. (Chlorophyta) strains isolated from an extreme acidic environment, the Tinto River (SW, Spain).
Aquat Toxicol. 2005 Nov 30;75(4):316-29. doi: 10.1016/j.aquatox.2005.09.002. Epub 2005 Oct 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验