Suppr超能文献

随机试验中存在不依从时简单有效的有偏校正工具变量估计器。

Simple efficient bias corrected instrumental variable estimator for randomized trials with noncompliance.

机构信息

Department of Biostatistics, University of Washington, Seattle, WA 98195, USA.

出版信息

Contemp Clin Trials. 2012 Jul;33(4):786-93. doi: 10.1016/j.cct.2012.03.013. Epub 2012 Mar 30.

Abstract

An instrumental variable (IV) estimator has been widely used to estimate causal effects among compliers in randomized trials with noncompliance. The estimator of complier average treatment effect can be expressed as a ratio of two unbiased estimators but the ratio estimator is not unbiased. The bias of IV estimator can be substantial when the sample size is small, or when there is substantial noncompliance. A simple adjustment to the standard instrumental variable estimator is studied to lower the bias. The bias corrected estimator can lower the bias in an order of magnitude, and we verify by numerical examples that the bias corrected estimator can have substantially lower bias and mean squared error compared to the usual IV estimator for small to moderate sample sizes. The proposed point estimator does not need an iterative procedure to implement and can perform well even when the outcome distributions of compliers and non-compliers do not overlap. We also discuss situations where the IV estimator and the proposed estimator can consistently estimate the population average treatment effect.

摘要

工具变量(IV)估计器已被广泛用于估计非依从性随机试验中依从者的因果效应。遵从者平均治疗效果的估计量可以表示为两个无偏估计量的比值,但比值估计量是有偏的。当样本量较小时,或者存在大量不依从时,IV 估计器的偏差可能很大。研究了一种简单的调整标准工具变量估计器的方法来降低偏差。偏置校正估计器可以降低偏差的数量级,通过数值示例验证,对于小到中等样本量,与常用的 IV 估计器相比,偏置校正估计器的偏差和均方误差可以显著降低。所提出的点估计器不需要迭代过程来实现,即使在遵从者和不遵从者的结果分布不重叠的情况下,也能很好地执行。我们还讨论了 IV 估计器和所提出的估计器可以一致估计总体平均治疗效果的情况。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验