Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5-7, 10117 Berlin, Germany.
ACS Nano. 2012 May 22;6(5):4190-5. doi: 10.1021/nn300690n. Epub 2012 Apr 19.
Bistable organic molecules were deposited on a weakly binding III-V semiconductor surface and then pinned into place using individual native adatoms. These pinning atoms, positioned by atomically precise manipulation techniques in a cryogenic scanning tunneling microscope (STM) at 5 K, stabilize the π-conjugated molecule against rotation excited by the tunneling electrons. The pinning allows triggering of the molecule's intrinsic switching mechanism (a hydrogen transfer reaction) by the STM tunnel current. Density-functional theory calculations reveal that the energetics of the switching process is virtually unaffected by both the surface and the pinning atoms. Hence, we have demonstrated that individual molecules with predictable, predefined functions can be stabilized and assembled on semiconductor templates.
双稳定有机分子被沉积在结合较弱的 III-V 半导体表面上,然后通过单个本征吸附原子将其固定在适当位置。这些固定原子通过低温扫描隧道显微镜(STM)中的原子级精确操纵技术定位,在 5 K 下稳定了π共轭分子,防止其被隧穿电子激发的旋转。这种固定作用允许 STM 隧穿电流触发分子的固有开关机制(氢转移反应)。密度泛函理论计算表明,开关过程的能量学几乎不受表面和固定原子的影响。因此,我们已经证明了具有可预测、预定义功能的单个分子可以在半导体模板上稳定和组装。