Uchiyama Junji, Asakura Ryosuke, Kimura Mayuko, Moriyama Atsushi, Tahara Hiroko, Kobayashi Yuta, Kubo Yuko, Yoshihara Toshihiro, Ohta Hisataka
Tokyo University of Science, Noda, Chiba, Japan.
Biochim Biophys Acta. 2012 Aug;1817(8):1270-6. doi: 10.1016/j.bbabio.2012.03.028. Epub 2012 Apr 3.
Two-component signal transduction is the primary signaling mechanism for global regulation of the cellular response to environmental changes. We used DNA microarray analysis to identify genes that were upregulated by acid stress in the cyanobacterium Synechocystis sp. PCC 6803. Several of these genes may be response regulators that are directly involved in this type of stress response. We constructed deletion mutants for the response regulator genes and compared the growth rates of cells transfected with mutant and wild-type genes in a low pH medium. Of these mutants, deletion of sphR affected the growth rate under acid stress (pH 6.0) conditions. We examined genome-wide expression in ΔsphR mutant cells using DNA microarray to determine whether SphR was involved in the regulation of other acid stress responsive genes. Microarray and real-time quantitative reverse-transcription polymerase chain reaction (qRT-PCR) analyses of wild-type cells showed that the expression of phoA, pstS1, and pstS2, which are upregulated under phosphate-limiting conditions, increased (2.48-, 1.88-, and 5.07-fold, respectively) after acid stress treatment for 0.5h. In contrast, pstS2 expression did not increase in the ΔsphR mutant cells after acid stress, whereas the phoA and sphX mRNA levels increased. Furthermore, qRT-PCR and northern blot analysis indicated that downregulation of the acid-responsive genes slr0967 and sll0939 occurred with the deletion of sphR. Indeed, mutants of these genes were more sensitive to acid stress than the wild-type cells. Thus, induction of Slr0967 and Sll0939 by SphR may be essential for growth under acid stress conditions. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.
双组分信号转导是细胞对环境变化进行全局调控的主要信号传导机制。我们利用DNA微阵列分析来鉴定在集胞藻PCC 6803中受酸胁迫上调的基因。其中一些基因可能是直接参与此类应激反应的应答调节因子。我们构建了应答调节因子基因的缺失突变体,并比较了在低pH培养基中转染突变体和野生型基因的细胞的生长速率。在这些突变体中,sphR的缺失影响了酸胁迫(pH 6.0)条件下的生长速率。我们使用DNA微阵列检测了ΔsphR突变体细胞中的全基因组表达,以确定SphR是否参与其他酸胁迫响应基因的调控。对野生型细胞的微阵列和实时定量逆转录聚合酶链反应(qRT-PCR)分析表明,在磷酸盐限制条件下上调的phoA、pstS1和pstS2的表达在酸胁迫处理0.5小时后增加(分别增加2.48倍、1.88倍和5.07倍)。相比之下,酸胁迫后ΔsphR突变体细胞中pstS2的表达没有增加,而phoA和sphX的mRNA水平增加。此外,qRT-PCR和Northern印迹分析表明,随着sphR的缺失,酸响应基因slr0967和sll0939的表达下调。事实上,这些基因的突变体比野生型细胞对酸胁迫更敏感。因此,SphR对Slr0967和Sll0939的诱导可能是酸胁迫条件下生长所必需的。本文是名为:可持续性光合作用研究:从自然到人工的特刊的一部分。