Suppr超能文献

一种在疲劳收缩过程中自动评估肌电图特征的与受试者无关的方法。

A subject-independent method for automatically grading electromyographic features during a fatiguing contraction.

机构信息

Department of Computer Science and Engineering and with the Center for Cognitive Ubiquitous Computing, Arizona State University, Tempe, AZ 85287, USA.

出版信息

IEEE Trans Biomed Eng. 2012 Jun;59(6):1749-57. doi: 10.1109/TBME.2012.2193881. Epub 2012 Apr 6.

Abstract

Many studies have attempted to monitor fatigue from electromyogram (EMG) signals. However, fatigue affects EMG in a subject-specific manner. We present here a subject-independent framework for monitoring the changes in EMG features that accompany muscle fatigue based on principal component analysis and factor analysis. The proposed framework is based on several time- and frequency-domain features, unlike most of the existing work, which is based on two to three features. Results show that latent factors obtained from factor analysis on these features provide a robust and unified framework. This framework learns a model from EMG signals of multiple subjects, that form a reference group, and monitors the changes in EMG features during a sustained submaximal contraction on a test subject on a scale from zero to one. The framework was tested on EMG signals collected from 12 muscles of eight healthy subjects. The distribution of factor scores of the test subject, when mapped onto the framework was similar for both the subject-specific and subject-independent cases.

摘要

许多研究都试图通过肌电图(EMG)信号来监测疲劳。然而,疲劳会以特定于个体的方式影响 EMG。我们在这里提出了一种基于主成分分析和因子分析的、针对个体的 EMG 特征变化监测的非依赖性框架。与大多数基于两到三个特征的现有工作不同,该框架基于多个时频域特征。结果表明,对这些特征进行因子分析得到的潜在因子提供了一个稳健且统一的框架。该框架从一组参考组的多个主体的 EMG 信号中学习模型,并在测试主体上进行持续的亚最大收缩时,对 EMG 特征的变化进行从 0 到 1 的标度监测。该框架在 8 名健康受试者的 12 块肌肉的 EMG 信号上进行了测试。当将测试主体的因子得分分布映射到该框架上时,在个体特定和非个体特定情况下的结果相似。

相似文献

1
A subject-independent method for automatically grading electromyographic features during a fatiguing contraction.
IEEE Trans Biomed Eng. 2012 Jun;59(6):1749-57. doi: 10.1109/TBME.2012.2193881. Epub 2012 Apr 6.
2
Influence of fatigue on hand muscle coordination and EMG-EMG coherence during three-digit grasping.
J Neurophysiol. 2010 Dec;104(6):3576-87. doi: 10.1152/jn.00583.2010. Epub 2010 Oct 6.
3
Fatigue related changes in electromyographic coherence between synergistic hand muscles.
Exp Brain Res. 2010 Apr;202(1):89-99. doi: 10.1007/s00221-009-2110-0. Epub 2009 Dec 12.
5
Intensity-dependent EMG response for the biceps brachii during sustained maximal and submaximal isometric contractions.
Eur J Appl Physiol. 2016 Sep;116(9):1747-55. doi: 10.1007/s00421-016-3435-6. Epub 2016 Jul 15.
6
The electromyographic fatigue threshold is not a valid tool to assess muscle function.
J Electromyogr Kinesiol. 2011 Apr;21(2):229-35. doi: 10.1016/j.jelekin.2010.10.012. Epub 2010 Nov 18.
7
Electromyogram and mechanomyogram changes in fresh and fatigued muscle during sustained contraction in men.
Eur J Appl Physiol Occup Physiol. 1998 Nov;78(6):494-501. doi: 10.1007/s004210050451.
9
Local muscle endurance is associated with fatigue-based changes in electromyographic spectral properties, but not with conduction velocity.
J Electromyogr Kinesiol. 2015 Jun;25(3):451-6. doi: 10.1016/j.jelekin.2015.02.006. Epub 2015 Feb 20.
10
Neuromuscular adjustments that constrain submaximal EMG amplitude at task failure of sustained isometric contractions.
J Appl Physiol (1985). 2011 Aug;111(2):485-94. doi: 10.1152/japplphysiol.00186.2011. Epub 2011 May 19.

引用本文的文献

2
Exploring the Influence of Inter-Trial Interval on the Assessment of Short-Interval Intracortical Inhibition.
Bioengineering (Basel). 2024 Jun 25;11(7):645. doi: 10.3390/bioengineering11070645.
3
Ranking hand movements for myoelectric pattern recognition considering forearm muscle structure.
Med Biol Eng Comput. 2017 Aug;55(8):1507-1518. doi: 10.1007/s11517-016-1608-4. Epub 2017 Jan 4.

本文引用的文献

1
Influence of fatigue on hand muscle coordination and EMG-EMG coherence during three-digit grasping.
J Neurophysiol. 2010 Dec;104(6):3576-87. doi: 10.1152/jn.00583.2010. Epub 2010 Oct 6.
2
Muscle fatigue detection in EMG using time-frequency methods, ICA and neural networks.
J Med Syst. 2010 Aug;34(4):777-85. doi: 10.1007/s10916-009-9292-7. Epub 2009 Apr 28.
3
sEMG wavelet-based indices predicts muscle power loss during dynamic contractions.
J Electromyogr Kinesiol. 2010 Dec;20(6):1097-106. doi: 10.1016/j.jelekin.2010.05.010. Epub 2010 Jun 25.
4
Influence of fatigue on the simulated relation between the amplitude of the surface electromyogram and muscle force.
Philos Trans A Math Phys Eng Sci. 2010 Jun 13;368(1920):2765-81. doi: 10.1098/rsta.2010.0094.
5
Training a multivariable myoelectric mapping function to estimate fatigue.
J Electromyogr Kinesiol. 2010 Oct;20(5):953-60. doi: 10.1016/j.jelekin.2009.11.001. Epub 2009 Dec 3.
6
Motor unit control and force fluctuation during fatigue.
J Appl Physiol (1985). 2009 Jul;107(1):235-43. doi: 10.1152/japplphysiol.00035.2009. Epub 2009 Apr 23.
7
Reliability difference between spectral and entropic measures of erector spinae muscle fatigability.
J Electromyogr Kinesiol. 2010 Feb;20(1):25-30. doi: 10.1016/j.jelekin.2008.11.005.
8
Electromyographic measures of muscle activation and changes in muscle architecture of human elbow flexors during fatiguing contractions.
J Appl Physiol (1985). 2008 Jun;104(6):1720-6. doi: 10.1152/japplphysiol.01058.2007. Epub 2008 Mar 20.
9
Muscle fatigue: what, why and how it influences muscle function.
J Physiol. 2008 Jan 1;586(1):11-23. doi: 10.1113/jphysiol.2007.139477. Epub 2007 Aug 16.
10
Mean frequency derived via Hilbert-Huang transform with application to fatigue EMG signal analysis.
Comput Methods Programs Biomed. 2006 May;82(2):114-20. doi: 10.1016/j.cmpb.2006.02.009. Epub 2006 Apr 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验