Suppr超能文献

贝叶斯方法在声源重建中的应用:最优基、正则化和聚焦。

A Bayesian approach to sound source reconstruction: optimal basis, regularization, and focusing.

机构信息

Laboratory Roberval CNRS UMR 6253, Rue Personne de Roberval, University of Technology of Compiègne, 60200 Compiègne France.

出版信息

J Acoust Soc Am. 2012 Apr;131(4):2873-90. doi: 10.1121/1.3685484.

Abstract

The reconstruction of acoustical sources from discrete field measurements is a difficult inverse problem that has been approached in different ways. Classical methods (beamforming, near-field acoustical holography, inverse boundary elements, wave superposition, equivalent sources, etc.) all consist--implicitly or explicitly--in interpolating the measurements onto some spatial functions whose propagation are known and in reconstructing the source field by retropropagation. This raises the fundamental question as whether, for a given source topology and array geometry, there exists an optimal interpolation basis which minimizes the reconstruction error. This paper provides a general answer to this question, by proceeding from a Bayesian formulation that is ideally suited to combining information of physical and probabilistic natures. The main findings are the followings: (1) The optimal basis functions are the M eigen-functions of a specific continuous-discrete propagation operator, with M being the number of microphones in the array. (2) The a priori inclusion of spatial information on the source field causes super-resolution according to a phenomenon coined "Bayesian focusing." (3) The approach is naturally endowed with an internal regularization mechanism and results in a robust regularization criterion with no more than one minimum. (4) It admits classical methods as particular cases.

摘要

从离散场测量中重建声源是一个具有挑战性的逆问题,已经有不同的方法来解决。经典方法(波束形成、近场声全息、逆边界元法、波叠加、等效源等)都隐含或显式地将测量值插值到一些已知传播的空间函数上,并通过反向传播来重建源场。这就提出了一个基本问题,即对于给定的源拓扑和阵列几何形状,是否存在一个最优的插值基,以最小化重建误差。本文通过从贝叶斯公式出发,为这个问题提供了一个一般性的答案,该公式非常适合结合物理和概率性质的信息。主要的发现如下:(1) 最优的基函数是特定连续-离散传播算子的 M 个特征函数,其中 M 是阵列中的麦克风数量。(2) 对源场的空间信息的先验包含导致了根据“贝叶斯聚焦”现象的超分辨率。(3) 该方法自然具有内部正则化机制,并产生了一个稳健的正则化准则,其最小值不超过一个。(4) 它可以作为特例包含经典方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验