Universidad Carlos III de Madrid, Departamento de Bioingeniería e Ingeniería Aeroespacial, 28911 Madrid, Spain.
J Biomed Opt. 2012 Mar;17(3):036013. doi: 10.1117/1.JBO.17.3.036013.
Reconstruction algorithms for imaging fluorescence in near infrared ranges usually normalize fluorescence light with respect to excitation light. Using this approach, we investigated the influence of absorption and scattering heterogeneities on quantification accuracy when assuming a homogeneous model and explored possible reconstruction improvements by using a heterogeneous model. To do so, we created several computer-simulated phantoms: a homogeneous slab phantom (P1), slab phantoms including a region with a two- to six-fold increase in scattering (P2) and in absorption (P3), and an atlas-based mouse phantom that modeled different liver and lung scattering (P4). For P1, reconstruction with the wrong optical properties yielded quantification errors that increased almost linearly with the scattering coefficient while they were mostly negligible regarding the absorption coefficient. This observation agreed with the theoretical results. Taking the quantification of a homogeneous phantom as a reference, relative quantification errors obtained when wrongly assuming homogeneous media were in the range +41 to +94% (P2), 0.1 to -7% (P3), and -39 to +44% (P4). Using a heterogeneous model, the overall error ranged from -7 to 7%. In conclusion, this work demonstrates that assuming homogeneous media leads to noticeable quantification errors that can be improved by adopting heterogeneous models.
近红外范围内的荧光成像重建算法通常将荧光光相对于激发光进行归一化。使用这种方法,我们研究了在假设均匀模型的情况下,吸收和散射异质性对定量准确性的影响,并通过使用非均匀模型探索了可能的重建改进。为此,我们创建了几个计算机模拟的体模:一个均匀平板体模(P1)、包括散射增加两到六倍的区域的平板体模(P2)和吸收增加的平板体模(P3),以及一个基于图谱的模拟不同肝脏和肺部散射的小鼠体模(P4)。对于 P1,用错误的光学特性进行重建会导致定量误差几乎呈线性增加,而与吸收系数相比,这些误差大多可以忽略不计。这一观察结果与理论结果一致。以均匀体模的定量为参考,当错误地假设均匀介质时,相对定量误差的范围为+41%至+94%(P2)、0.1%至-7%(P3)和-39%至+44%(P4)。使用非均匀模型,总误差范围为-7%至 7%。总之,这项工作表明,假设均匀介质会导致明显的定量误差,通过采用非均匀模型可以改善这些误差。