Suppr超能文献

通过湿地植物的气相和蒸腾驱动机制进行挥发。

Gas-phase and transpiration-driven mechanisms for volatilization through wetland macrophytes.

机构信息

Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States.

出版信息

Environ Sci Technol. 2012 May 15;46(10):5344-52. doi: 10.1021/es203297a. Epub 2012 Apr 30.

Abstract

Natural and constructed wetlands have gained attention as potential tools for remediation of shallow sediments and groundwater contaminated with volatile organic compounds (VOCs). Wetland macrophytes are known to enhance rates of contaminant removal via volatilization, but the magnitude of different volatilization mechanisms, and the relationship between volatilization rates and contaminant physiochemical properties, remain poorly understood. Greenhouse mesocosm experiments using the volatile tracer sulfur hexafluoride were conducted to determine the relative magnitudes of gas-phase and transpiration-driven volatilization mechanisms. A numerical model for vegetation-mediated volatilization was developed, calibrated with tracer measurements, and used to predict plant-mediated volatilization of common VOCs as well as quantify the contribution of different volatilization pathways. Model simulations agree with conclusions from previous work that transpiration is the main driver for volatilization of VOCs, but also demonstrate that vapor-phase transport in wetland plants is significant, and can represent up to 50% of the total flux for compounds with greater volatility like vinyl chloride.

摘要

自然和人工湿地作为修复挥发性有机化合物(VOCs)污染浅层沉积物和地下水的潜在工具引起了人们的关注。湿地植物被认为可以通过挥发作用提高污染物去除率,但不同挥发机制的幅度以及挥发速率与污染物物理化学性质之间的关系仍知之甚少。使用挥发性示踪剂六氟化硫进行了温室中观实验,以确定气相和蒸腾驱动挥发机制的相对幅度。开发了一种用于植被介导挥发的数值模型,并用示踪剂测量进行了校准,并用于预测常见 VOC 的植物介导挥发,以及量化不同挥发途径的贡献。模型模拟结果与先前研究的结论一致,即蒸腾是 VOC 挥发的主要驱动因素,但也表明,在具有较高挥发性的化合物(如氯乙烯)中,湿地植物中的气相传输非常重要,其占总通量的比例可达 50%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验