Department of Chemistry, The University of Burdwan, Golapbag, Burdwan 713104, India.
Spectrochim Acta A Mol Biomol Spectrosc. 2012 Sep;95:317-30. doi: 10.1016/j.saa.2012.03.083. Epub 2012 Apr 6.
The present paper reports the spectroscopic and theoretical investigations on the formation of supramolecular complexes of a designed bisporphyrin (1) with C(60) and C(70) in toluene. Absorption spectrophotometric studies establish appreciable amount of ground state electronic interaction between fullerenes and 1. The interaction is facilitated through charge transfer (CT) transition as evidenced from well defined CT absorption bands in the visible region of the electronic spectra. In our present case, the CT interaction may be claimed as one of the rare findings, especially on account of interaction between fullerenes and bisporphyrin in a non-polar solvent. Other than fullerenes C(60) and C(70), various other electron acceptors, viz., 2,3-dichloro-5,6-dicyano-p-benzoquinone, tetracyanoethylene, o-chloranil and p-chloranil form CT complexes with 1. Utilizing the CT transition energies for various electron donor-acceptor complexes of 1, vertical ionization potential (I(D)(v)) of 1 is determined to be 6.37 eV in solution. Estimation of degrees of CT, oscillator and transition dipole strengths evoke that the fullerene-1 non-covalent complexes are of neutral character in ground state. Higher magnitude of electronic coupling elements for the C(70)-1 complex compared to C(60)-1 complex indicates strong binding between C(70) and 1. Steady state fluorescence studies elicit efficient quenching of the fluorescence of 1 in presence of fullerenes. Both UV-Vis and steady state fluorescence measurements reveal large value of binding constant (K) for C(70)-1 system (∼6.94 × 10(4)dm(3)mol(-1)) than that of C(60)-1 system (K∼2.1 × 10(4)dm(3)mol(-1)). Time resolved emission studies establish charge-separated state for the fullerene-1 systems. Transient absorption measurements in the visible region establish the formation of 1(+) and fullerene(-) in toluene medium. Molecular mechanics calculations employing force field method in vacuo evoke the single projection structures of the fullerene-1 complexes and interpret the stability difference between C(60) and C(70) complexes of 1 in terms of heat of formation values of the respective complexes.
本文报道了在甲苯中设计的双卟啉(1)与 C(60)和 C(70)形成超分子配合物的光谱和理论研究。吸收光谱研究表明,富勒烯和 1 之间存在可观的基态电子相互作用。从可见区域电子光谱中的明显 CT 吸收带可以证明,这种相互作用是通过电荷转移(CT)跃迁促进的。在我们目前的情况下,可以声称这种 CT 相互作用是罕见的发现之一,特别是考虑到在非极性溶剂中富勒烯和双卟啉之间的相互作用。除了富勒烯 C(60)和 C(70)之外,各种其他电子受体,例如 2,3-二氯-5,6-二氰基对苯醌、四氰乙烯、邻氯代对苯醌和对氯代对苯醌,与 1 形成 CT 配合物。利用 1 的各种给体-受体配合物的 CT 跃迁能量,确定 1 在溶液中的垂直电离势(I(D)(v))为 6.37eV。CT 强度、振子强度和跃迁偶极强度的估算表明,在基态下,富勒烯-1 非共价配合物具有中性特征。与 C(60)-1 配合物相比,C(70)-1 配合物的电子耦合元素的较大幅度表明 C(70)和 1 之间具有较强的结合力。稳态荧光研究表明,在富勒烯存在下,1 的荧光被有效猝灭。紫外-可见和稳态荧光测量都揭示了 C(70)-1 体系(∼6.94×10(4)dm(3)mol(-1))的结合常数(K)值大于 C(60)-1 体系(K∼2.1×10(4)dm(3)mol(-1))。时间分辨发射研究建立了富勒烯-1 体系的电荷分离态。在可见区域的瞬态吸收测量建立了在甲苯介质中 1(+)和富勒烯(-)的形成。采用真空力场方法的分子力学计算得出了富勒烯-1 配合物的单投影结构,并根据各自配合物的生成热值解释了 1 与 C(60)和 C(70)配合物之间稳定性差异的原因。