Suppr超能文献

双步级联 MAPK 中的噪声传播。

Noise propagation in two-step series MAPK cascade.

机构信息

Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, India.

出版信息

PLoS One. 2012;7(5):e35958. doi: 10.1371/journal.pone.0035958. Epub 2012 May 1.

Abstract

Series MAPK enzymatic cascades, ubiquitously found in signaling networks, act as signal amplifiers and play a key role in processing information during signal transduction in cells. In activated cascades, cell-to-cell variability or noise is bound to occur and thereby strongly affects the cellular response. Commonly used linearization method (LM) applied to Langevin type stochastic model of the MAPK cascade fails to accurately predict intrinsic noise propagation in the cascade. We prove this by using extensive stochastic simulations for various ranges of biochemical parameters. This failure is due to the fact that the LM ignores the nonlinear effects on the noise. However, LM provides a good estimate of the extrinsic noise propagation. We show that the correct estimate of intrinsic noise propagation in signaling networks that contain at least one enzymatic step can be obtained only through stochastic simulations. Noise propagation in the cascade depends on the underlying biochemical parameters which are often unavailable. Based on a combination of global sensitivity analysis (GSA) and stochastic simulations, we developed a systematic methodology to characterize noise propagation in the cascade. GSA predicts that noise propagation in MAPK cascade is sensitive to the total number of upstream enzyme molecules and the total number of molecules of the two substrates involved in the cascade. We argue that the general systematic approach proposed and demonstrated on MAPK cascade must accompany noise propagation studies in biological networks.

摘要

系列 MAPK 酶级联反应普遍存在于信号网络中,作为信号放大器,在细胞信号转导过程中对信息处理起着关键作用。在激活的级联反应中,细胞间的变异性或噪声必然会发生,从而强烈影响细胞的反应。通常用于 Langevin 型随机 MAPK 级联模型的线性化方法 (LM) 无法准确预测级联中的固有噪声传播。我们通过对各种生化参数范围的广泛随机模拟证明了这一点。这种失败是由于 LM 忽略了对噪声的非线性影响。然而,LM 提供了外生噪声传播的良好估计。我们表明,只有通过随机模拟才能获得包含至少一个酶步骤的信号网络中固有噪声传播的正确估计。级联中的噪声传播取决于基础生化参数,而这些参数通常是不可用的。基于全局敏感性分析 (GSA) 和随机模拟的组合,我们开发了一种系统的方法来描述级联中的噪声传播。GSA 预测,MAPK 级联中的噪声传播对上游酶分子的总数和级联中涉及的两种底物分子的总数敏感。我们认为,在 MAPK 级联上提出并证明的通用系统方法必须伴随着生物网络中的噪声传播研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2a2/3341401/22da396b617f/pone.0035958.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验