Suppr超能文献

考虑运动因素可提高帕金森病脑活动检测的灵敏度。

Accounting for movement increases sensitivity in detecting brain activity in Parkinson's disease.

机构信息

Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.

出版信息

PLoS One. 2012;7(5):e36271. doi: 10.1371/journal.pone.0036271. Epub 2012 May 1.

Abstract

Parkinson's disease (PD) is manifested by motor impairment, which may impede the ability to accurately perform motor tasks during functional magnetic resonance imaging (fMRI). Both temporal and amplitude deviations of movement performance affect the blood oxygenation level-dependent (BOLD) response. We present a general approach for assessing PD patients' movement control employing simultaneously recorded fMRI time series and behavioral data of the patients' kinematics using MR-compatible gloves. Twelve male patients with advanced PD were examined with fMRI at 1.5T during epoch-based visually paced finger tapping. MR-compatible gloves were utilized online to quantify motor outcome in two conditions with or without dopaminergic medication. Modeling of individual-level brain activity included (i) a predictor consisting of a condition-specific, constant-amplitude boxcar function convolved with the canonical hemodynamic response function (HRF) as commonly used in fMRI statistics (standard model), or (ii) a custom-made predictor computed from glove time series convolved with the HRF (kinematic model). Factorial statistics yielded a parametric map for each modeling technique, showing the medication effect on the group level. Patients showed bilateral response to levodopa in putamen and globus pallidus during the motor experiment. Interestingly, kinematic modeling produced significantly higher activation in terms of both the extent and amplitude of activity. Our results appear to account for movement performance in fMRI motor experiments with PD and increase sensitivity in detecting brain response to levodopa. We strongly advocate quantitatively controlling for motor performance to reach more reliable and robust analyses in fMRI with PD patients.

摘要

帕金森病(PD)表现为运动障碍,这可能会妨碍患者在功能磁共振成像(fMRI)期间准确执行运动任务。运动表现的时间和幅度偏差都会影响血氧水平依赖(BOLD)反应。我们提出了一种使用同时记录的 fMRI 时间序列和患者运动学的行为数据来评估 PD 患者运动控制的通用方法,这些数据是使用与磁共振兼容的手套获得的。12 名患有晚期 PD 的男性患者在 1.5T 磁共振扫描仪上接受了基于 epoch 的视觉节拍手指敲击 fMRI 检查。使用与磁共振兼容的手套在线定量评估有无多巴胺能药物的两种情况下的运动结果。个体水平脑活动的建模包括(i)一个由条件特定、恒定幅度的 Boxcar 函数与常用的 fMRI 统计中的标准 HRF(标准模型)卷积而成的预测器,或(ii)由手套时间序列与 HRF 卷积而成的定制预测器(运动模型)。因子统计为每种建模技术生成了一个参数图,显示了药物对组水平的影响。在运动实验中,患者双侧纹状体和苍白球对左旋多巴有反应。有趣的是,运动模型在活动的范围和幅度方面都产生了更高的激活。我们的结果似乎解释了 PD 患者 fMRI 运动实验中的运动表现,并提高了检测大脑对左旋多巴反应的灵敏度。我们强烈主张定量控制运动表现,以在 PD 患者的 fMRI 分析中达到更可靠和稳健的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d272/3341369/63384c3c5f32/pone.0036271.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验