Lehrstuhl für Anorganische Chemie II, Organometallics and Materials Chemistry, Ruhr-Universität Bochum, Germany.
J Am Chem Soc. 2012 Jun 6;134(22):9464-74. doi: 10.1021/ja302991b. Epub 2012 May 23.
Flexible metal-organic frameworks (MOFs), also referred to as soft porous crystals (SPCs), show reversible structural transitions dependent on the nature and quantity of adsorbed guest molecules. In recent studies it has been reported that covalent functionalization of the organic linker can influence or even integrate framework flexibility ("breathing") in MOFs. However, rational fine-tuning of such responsive properties is very desirable but challenging as well. Here we present a powerful approach for the targeted manipulation of responsiveness and framework flexibility of an important family of pillared-layered MOFs based on the parent structure Zn(2)(bdc)(2)(dabco) (bdc = 1,4-benzenedicarboxylate; dabco = 1,4-diazabicyclo[2.2.2]octane). A library of functionalized bdc-type linkers (fu-bdc), which bear additional dangling side groups at different positions of the benzene core (alkoxy groups of varying chain length with diverse functionalities and polarity), was generated. Synthesis of the materials Zn(2)(fu-bdc)(2)(dabco) yields the respective collection of highly responsive MOFs. The parent MOF is only weakly flexible; however, the substituted frameworks of Zn(2)(fu-bdc)(2)(dabco) contract drastically upon guest removal and expand again upon adsorption of DMF (N,N-dimethylformamide), EtOH, or CO(2), etc., while N(2) is hardly adsorbed and does not open the narrow-pored form. These "breathing" dynamics are attributed to the dangling side chains that act as immobilized "guests", which interact with mobile guest molecules as well as with themselves and with the framework backbone. The structural details of the guest-free, contracted form and the gas sorption behavior (phase transition pressure, hysteresis loop) are highly dependent on the nature of the substituent at the linker and can therefore be adjusted using our approach. Combining our library of functionalized linkers with the concept of mixed-component MOFs (solid solutions) offers very rich additional dimensions of tailoring the structural dynamics and responsiveness. Implementation of two differently functionalized linkers in varying ratios yields multicomponent single-phased Zn(2)(fu-bdc')(2x)(fu-bdc″)(2-2x)(dabco) MOFs (0 < x < 1) of increased inherent complexity, which feature a non-linear dependence of their gas sorption properties on the applied ratio of components. Hence, the responsive behavior of such pillared-layered MOFs can be extensively tuned via an intelligent combination of functionalized linkers.
柔性金属有机骨架(MOFs),也称为软多孔晶体(SPCs),表现出依赖于吸附客体分子的性质和数量的可逆结构转变。在最近的研究中,已经报道了有机连接体的共价功能化可以影响甚至整合 MOFs 的框架灵活性(“呼吸”)。然而,这种响应特性的合理微调是非常可取的,但也具有挑战性。在这里,我们提出了一种强大的方法,用于针对基于母体结构 Zn(2)(bdc)(2)(dabco)(bdc = 1,4-苯二甲酸;dabco = 1,4-二氮杂双环[2.2.2]辛烷)的重要支柱层状 MOFs 家族的响应性和框架灵活性进行靶向操作。生成了一系列功能化的 bdc 型连接体(fu-bdc),它们在苯核的不同位置(具有不同功能和极性的不同链长的烷氧基侧基)上带有额外的悬空侧基。材料 Zn(2)(fu-bdc)(2)(dabco) 的合成产生了高度响应的 MOFs 的相应集合。母体 MOF 仅具有较弱的灵活性;然而,Zn(2)(fu-bdc)(2)(dabco) 的取代框架在除去客体后急剧收缩,并在吸附 DMF(N,N-二甲基甲酰胺)、EtOH 或 CO(2)等时再次膨胀,而 N(2)几乎不被吸附并且不会打开窄孔形式。这些“呼吸”动力学归因于作为固定“客体”的悬空侧链,它们与可移动的客体分子以及彼此和与框架主链相互作用。无客体、收缩形式的结构细节和气体吸附行为(相变压力、滞后环)高度依赖于连接体上取代基的性质,因此可以使用我们的方法进行调整。将我们的功能化连接体库与混合成分 MOFs(固溶体)的概念相结合,为定制结构动力学和响应性提供了非常丰富的附加维度。在不同比例下实施两种不同功能化的连接体,可得到固有复杂性增加的多组分单相Zn(2)(fu-bdc')(2x)(fu-bdc″)(2-2x)(dabco) MOFs(0 < x < 1),其气体吸附性质对所施加的组分比例具有非线性依赖性。因此,通过智能组合功能化连接体,可以广泛调节此类支柱层状 MOFs 的响应行为。