Suppr超能文献

平行抗癌药物开发和分子分层以确定预测性生物标志物:应对阻碍进展的障碍。

Parallel anticancer drug development and molecular stratification to qualify predictive biomarkers: dealing with obstacles hindering progress.

机构信息

Drug Development Unit, The Royal Marsden National Health Service Foundation Trust, Sutton, Surrey, United Kingdom.

出版信息

Cancer Discov. 2011 Aug;1(3):207-12. doi: 10.1158/2159-8290.CD-11-0161.

Abstract

Current anticancer drug development still largely follows the classic designs developed for chemotherapeutic agents over the past 4 to 5 decades, remaining slow, costly, and inefficient, with continuing high risks of costly late drug attrition. A Pharmacologic Audit Trail has been described to decrease these risks, incorporating pharmacokinetic, pharmacodynamic, intermediate efficacy endpoints, as well as patient stratification molecular biomarkers. Molecular biomarker-based patient selection in hypothesis-testing early clinical trials is critical to clinically qualify putative predictive biomarkers for rationally designed, molecularly targeted drugs as early as possible. Nevertheless, major concerns have been raised about the impact of using such biomarkers in early trials, in view of the costs and time involved to develop multiple certified assays for clinical use. The rapid evolution of novel technologies of utility to this field, such as next-generation sequencing and circulating tumor-cell isolation, makes these valid concerns of critical importance. We therefore propose a more efficient parallel predictive biomarker and clinical anticancer drug development process to deal with the obstacles hindering progress.

摘要

当前的抗癌药物开发仍然在很大程度上遵循过去 4 到 5 十年中为化学治疗药物开发的经典设计,仍然缓慢、昂贵且效率低下,继续存在着昂贵的晚期药物淘汰的高风险。已经描述了药理学审核追踪以降低这些风险,包括药代动力学、药效动力学、中间疗效终点以及患者分层分子生物标志物。基于分子生物标志物的患者选择在假设检验性早期临床试验中至关重要,以便尽早将假定的预测性生物标志物用于合理设计的、针对分子的药物的临床鉴定。然而,鉴于开发用于临床使用的多个经认证的检测方法所涉及的成本和时间,在早期试验中使用此类生物标志物引起了人们的极大关注。用于该领域的新型有用技术(例如下一代测序和循环肿瘤细胞分离)的快速发展,使得这些合理关注的重要性变得至关重要。因此,我们提出了一种更有效的平行预测生物标志物和临床抗癌药物开发过程,以应对阻碍进展的障碍。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验