Department of Plant Ecology, Forestry and Forest Products Research Institute, Matsunosato 1, Tsukuba 305-8687, Japan.
Physiol Plant. 2013 Feb;147(2):159-68. doi: 10.1111/j.1399-3054.2012.01651.x. Epub 2012 Jun 26.
To determine the effects of elevated CO(2) concentration ([CO(2)]) on the temperature-dependent photosynthetic properties, we measured gas exchange and chlorophyll fluorescence at various leaf temperatures (15, 20, 25, 30, 35 and 40°C) in 1-year-old seedlings of the Japanese white birch (Betula platyphylla var. japonica), grown in a phytotron under natural daylight at two [CO(2)] levels (ambient: 400 µmol mol(-1) and elevated: 800 µmol mol(-1)) and limited N availability (90 mg N plant(-1)). Plants grown under elevated [CO(2)] exhibited photosynthetic downregulation, indicated by a decrease in the carboxylation capacity of Rubisco. At temperatures above 30°C, the net photosynthetic rates of elevated-CO(2)-grown plants exceeded those grown under ambient [CO(2)] when compared at their growth [CO(2)]. Electron transport rates were significantly lower in elevated-CO(2)-grown plants than ambient-CO(2)-grown ones at temperatures below 25°C. However, no significant difference was observed in the fraction of excess light energy [(1 - q(P))× F(v)'/F(m)'] between CO(2) treatments across the temperature range. The quantum yield of regulated non-photochemical energy loss was significantly higher in elevated-CO(2)-grown plants than ambient, when compared at their respective growth [CO(2)] below 25°C. These results suggest that elevated-CO(2)-induced downregulation might not exacerbate the temperature-dependent susceptibility to photoinhibition, because reduced energy consumption by electron transport was compensated for by increased thermal energy dissipation at low temperatures.
为了确定升高的 CO2 浓度 ([CO2]) 对温度依赖型光合作用特性的影响,我们在自然光照下,于生长箱内,以两种 CO2 水平(环境:400 μmol mol(-1)和升高:800 μmol mol(-1)) 和有限的 N 供应(90 mg N 植物(-1)) 下,对 1 年生日本白桦(Betula platyphylla var. japonica)幼苗进行了研究。在不同叶片温度(15、20、25、30、35 和 40°C)下测量了气体交换和叶绿素荧光。与在环境 CO2 下生长的植株相比,在升高的 CO2 下生长的植株表现出光合下调,Rubisco 的羧化能力下降。在 30°C 以上的温度下,与在其生长 CO2 下相比,升高 CO2 下生长的植株的净光合速率超过了在环境 CO2 下生长的植株。在 25°C 以下的温度下,与在环境 CO2 下生长的植株相比,升高 CO2 下生长的植株的电子传递速率显著较低。然而,在整个温度范围内,CO2 处理之间没有观察到过剩光能的分数 [(1 - q(P))× F(v)'/F(m)'] 存在显著差异。在 25°C 以下,与在各自的生长 CO2 下相比,升高 CO2 下生长的植株的调节非光化学能量损失的量子产率显著更高。这些结果表明,升高 CO2 引起的下调可能不会加剧温度依赖型光抑制的敏感性,因为在低温下,电子传递的能量消耗减少被增加的热能耗散所补偿。