Molecular Medicine Program, University of Utah, Salt Lake City, Utah 84132, USA.
Eur J Haematol. 2012 Jul;89(1):28-36. doi: 10.1111/j.1600-0609.2012.01792.x.
Identifying the best gene expression pattern associated with low-risk disease in patients with newly diagnosed multiple myeloma (MM) is important to direct clinical treatments. The MM Survival Index14 (MMSI14) was developed from GEP data sets of 22 normal plasma cells (NPC), 5 MM cell lines (MMCL), 44 monoclonal gammopathy of undetermined significance (MGUS), and 351 newly diagnosed MM patients. R/bioconductor and siggenes package were used to obtain heatmap, boxplot and histogram whose results were then analyzed by Kaplan-Meier analysis. Fourteen genes associated with low-risk disease in MM were identified. We validated the disease prognostic power of MMSI14 with an independent data set of other 214 newly diagnosed MM patients and also compared our model with the 70-gene, the 8-subgroup, IFM15, and HMCLs7 models. Survival analysis showed that a low MMSI14 signature was associated with longer survival. Applying MMSI14 to independent data sets, we were able to classify 39% of patients as low-risk, with a survival probability of more than 90% at 60 months. Multiple clinical parameters confirmed significant correlation between low- and high-risk subgroups defined by MMSI14. Comparing previously published models to the same data sets the MMSI14 model retained the best prognostic value. We have developed a new gene model (MMSI14) for defining low-risk, newly diagnosed MM. The multivariate comparative analysis confirmed that MMSI14 is the best available model to predict clinical outcome in MM patients.
确定与新诊断多发性骨髓瘤(MM)患者低危疾病相关的最佳基因表达模式对于指导临床治疗非常重要。MM 生存指数 14(MMSI14)是从 22 个正常浆细胞(NPC)、5 个 MM 细胞系(MMCL)、44 个意义未明单克隆丙种球蛋白血症(MGUS)和 351 例新诊断 MM 患者的 GEP 数据集中开发的。使用 R/bioconductor 和 siggenes 包获得热图、箱线图和直方图,然后通过 Kaplan-Meier 分析对结果进行分析。确定了与 MM 中低危疾病相关的 14 个基因。我们使用另一个 214 例新诊断 MM 患者的独立数据集验证了 MMSI14 的疾病预后能力,还将我们的模型与 70 基因、8 亚组、IFM15 和 HMCLs7 模型进行了比较。生存分析表明,低 MMSI14 特征与更长的生存时间相关。将 MMSI14 应用于独立数据集,我们能够将 39%的患者分类为低危,60 个月时的生存概率超过 90%。多项临床参数证实,MMSI14 定义的低危和高危亚组之间存在显著相关性。将之前发表的模型与相同数据集进行比较,MMSI14 模型保留了最佳的预后价值。我们已经开发了一种新的基因模型(MMSI14),用于定义低危、新诊断的 MM。多变量比较分析证实,MMSI14 是预测 MM 患者临床结局的最佳可用模型。